ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 30 (1991), S. 2127-2130 
    ISSN: 0031-9422
    Keywords: Compositae ; Helianthus annuus ; high oleic mutant ; microsomes ; oleate desaturase ; seeds ; sunflower ; temperature control.
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 28 (1989), S. 2593-2595 
    ISSN: 0031-9422
    Keywords: Compositae ; Helianthus annuus ; high oleic acid mutant. ; oleate desaturation ; sunflower, seeds
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 28 (1989), S. 2597-2600 
    ISSN: 0031-9422
    Keywords: Compositae ; Helianthus annuus ; fatty acid composition ; high oleic acid mutant. ; lipids ; seeds ; sunflower
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Helianthus ; Microsome ; Oil body ; Oleate desaturation ; Seed (fatty acids) ; Triacylglycerol metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract For the first time, an active fatty-acid metabolism is indicated for triacylglycerols (TAG) of developing sunflower (Helianthus annuus L.) seeds. When the developing seeds were transferred to low temperature, the total amount of oleate found in TAG decreased as that of linoleate increased, while the contents of total lipids and TAG remained unchanged. These results suggest that oleate from TAG was used for desaturation. This occurred first in microsomal TAG, but after a long cold period it was observed mainly in the oil-body fraction. Thesn-2 position of TAG was preferentially enriched in linoleate. Apparently, more linoleate than necesary for the maintenance of membrane fluidity was synthesized at the expense of TAG oleate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Key words:Helianthus (seed) ; Microsome ; Oil body ; Oleate desaturase ; Temperature adaptation ; Triacylglycerol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. In-vivo experiments with developing sunflower (Helianthus annuus L.) seeds demonstrated that oleate desaturase activity was stimulated by low temperature (10 °C), repressed by high temperature (30 °C) and rapidly restored by returning the seeds to low temperature. Within time periods of 2–4 h, in which the de-novo fatty acid synthesis was negligible, the percentages of oleate (18:1) and linoleate (18:2) were modified in the seed lipids as a consequence of temperature adaptation. When the seeds were transferred to low temperature, the 18:2 content increased in all lipids from both microsomal membranes and oil bodies. After shifting to high temperature, the overall 18:2 content remained constant, but the 18:2 content decreased in diacylglycerols, phosphatidylcholine (PC) and other polar lipids of the two fractions and also in triacylglycerols (TAGs) of the microsomes but increased in TAGs of the oil bodies. The results indicate that the mechanism for the rapid adaptation of sunflower seeds to temperature changes involves (i) the synthesis or activation of oleate desaturase at low temperature and the reversible inhibition of this enzyme at high temperature and (ii) the exchange of 18:1 and 18:2 between TAGs and PC. Under both low and high temperature, 18:1 is transferred from reserve TAGs to PC and 18:2 is transferred from PC to reserve TAGs. At low temperature, 18:1 is desaturated to 18:2 thus allowing the enrichment of membrane lipids with 18:2, the excess being stored in reserve TAGs. At high temperature, however, and provided that oleate desaturase is repressed, the membrane lipids become enriched in 18:1 and the oil-body TAGs become enriched in 18:2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Key words Sunflower ; Helianthus annuus ; High palmitic acid ; High stearic acid ; Epistatic interaction ; Inheritance ; Oil quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Two sunflower (Helianthus annuus L.) mutants with high concentrations of saturated fatty acids in their seed oil have been identified and studied extensively. The mutant line CAS-5 has high concentrations of palmitic acid (C16:0) (〉25% compared with 7% in standard sunflower seed oil) and low-C18:0 values (3%). CAS-3 is characterized by its high levels of stearic acid (C18:0) (〉22% compared with 4% in standard sunflower seed oil) and a low-C16:0 content (5%). CAS-5 also possesses elevated levels of palmitoleic acid (C16:1) (〉5%), which is absent in standard sunflower seed oil. The objective of this study was to determine the relationships between the loci controlling the high-C16:0 and the high-C18:0 traits in these mutants. Plants of both mutants were reciprocally crossed. Gas chromatographic analyses of fatty acids from the seed oil of F1, F2, F3 and the BC1F1 to CAS-5 generations indicated that the loci controlling the high-C16:0 trait exerted an epistatic effect over the loci responsible for the high-C18:0 character. As a result, the phenotypic combination containing both the high-C16:0 levels of CAS-5 and the high-C18:0 levels of CAS-3 was not possible. However, phenotypes with a saturated fatty acid content of 44% (34.5% C16:0+9.5% C18:0) were identified in the F3 generation. These are the highest saturated (C16:0 and C18:0) levels reported so far in sunflower seed oil. When F3 C16:0 segregating generations in both a high- and a low-C18:0 background were compared, the high-C16:1 levels were not expressed as expected in the high-C18:0 background (CAS-3 background). In this case, the C16:1 content decreased to values below 1.5%, compared with 〉5% in a low-C18:0 background. As the stearoyl-ACP desaturase has been reported to catalyze the desaturation from C16:0-ACP to C16:1-ACP, these results suggested that a decrease in its activity was involved in the accumulation of C18:0 in the high-C18:0 mutant CAS-3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5060
    Keywords: Helianthus annuus ; sunflower ; oleic acid content ; linoleic acid content ; genetical analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Sunflower lines breeding true for very high oleic acid content in their oil (average levels higher than 85%) were crossed with standard sunflower lines with mean oleic acid levels of 30%. Analysis of the oil of F1 seeds indicated dominance for high oleic levels and control of the genotype of the embryo. Segregating generations were obtained selfing heterozygous high oleic BCnF1 plants from several generations of a backcrossing program to incorporate the high oleic character to standard inbred lines and testcrossing these plants to low oleic material. Analysis of F2 and testcrossed seeds showed three kind of segregations, in both F2 and testcrossed populations, with different proportions of low, intermediate and high oleic types. Genetic analysis of these data supported the hypothesis, that the high oleic character is controlled by three dominant complementary genes OL1, OL2 and OL3. Additional data showing F1 seeds with intermediate oleic content and segregations for high oleic in progenies of intermediate types, suggest the presence of major factors modifying high oleic acid content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5060
    Keywords: Helianthus annuus ; fatty acids ; palmitic acid ; X-ray mutagenesis ; seed oil ; sunflower
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A new sunflower mutant, CAS-12, was obtained, which has both high palmitic (≈30%) and high oleic acid contents, and also a substantial amount of palmitoleic acid (≈7%). The mutant was selected after X-ray irradiation of dry seeds of the inbred line BSD-2-423, which had normal palmitic (≈3%) and high oleic (≈88%) acid levels. The increase of palmitic and palmitoleic acids occurred at the expense of the oleic acid content, which decreased to around 55% in respect to the original line. Linoleic acid content is always under 5%. Palmitic and palmitoleic acid levels were similar to those of the high palmitic mutant CAS-5 obtained in a previous programme from a low oleic line isogenic to BSD-2-423 using a similar mutagenic treatment. In that previous programme we also selected three high stearic acid mutants using chemical mutagenic treatment on the same sunflower line (RDF-1-532). We attempted to obtain mutants in other lines but were unsuccessful. The isolation of similar mutants in isogenic parental lines illustrates the importance of the genetic background in the development of specific mutants with an altered seed oil fatty acid composition. The oil of this mutant will increase the range of potential uses of sunflower oil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...