ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cd/Ca  (1)
  • Heat transport  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 387 (2014): 240–251, doi:10.1016/j.epsl.2013.11.032.
    Description: Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ∼19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (∼12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived δ18O of seawater (δ18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional δ18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the δ18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
    Description: ThisworkwasfundedbytheNationalScienceFoundation;theOceanandClimateChangeInstituteandtheAcademicProgramsOfficeatWoodsHoleOceano-graphicInstitution;BMBF(PABESIA);andDFG(He3412/15-1)
    Keywords: Indo-Pacific ; Eastern Equatorial Pacific ; δ18O of seawater ; Deglaciation ; Heat transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Umling, N. E., Oppo, D. W., Chen, P., Yu, J., Liu, Z., Yan, M., Gebbie, G., Lund, D. C., Pietro, K. R., Jin, Z. D., Huang, K., Costa, K. B., & Toledo, F. A. L. Atlantic circulation and ice sheet influences on upper South Atlantic temperatures during the last deglaciation. Paleoceanography and Paleoclimatology, 34(6), (2019): 990-1005, doi:10.1029/2019PA003558.
    Description: Atlantic Meridional Overturning Circulation (AMOC) disruption during the last deglaciation is hypothesized to have caused large subsurface ocean temperature anomalies, but records from key regions are not available to test this hypothesis, and other possible drivers of warming have not been fully considered. Here, we present the first reliable evidence for subsurface warming in the South Atlantic during Heinrich Stadial 1, confirming the link between large‐scale heat redistribution and AMOC. Warming extends across the Bølling‐Allerød despite predicted cooling at this time, thus spanning intervals of both weak and strong AMOC indicating another forcing mechanism that may have been previously overlooked. Transient model simulations and quasi‐conservative water mass tracers suggest that reduced northward upper ocean heat transport was responsible for the early deglacial (Heinrich Stadial 1) accumulation of heat at our shallower (~1,100 m) site. In contrast, the results suggest that warming at our deeper site (~1,900 m) site was dominated by southward advection of North Atlantic middepth heat anomalies. During the Bølling‐Allerød, the demise of ice sheets resulted in oceanographic changes in the North Atlantic that reduced convective heat loss to the atmosphere, causing subsurface warming that overwhelmed the cooling expected from an AMOC reinvigoration. The data and simulations suggest that rising atmospheric CO2 did not contribute significantly to deglacial subsurface warming at our sites.
    Description: We thank H. Abrams, G. Swarr, and J. Watson for technical assistance. This work was funded by the U.S. National Science Foundation grant OCE15‐558341, the Investment in Science Fund at the Woods Hole Oceanographic Institution, and an Australian Research Council Future Fellowship (FT140100993). The data are included in the supporting information and are available online (https://www.ncdc.noaa.gov/paleo/study/26530).
    Keywords: Brazil margin ; Atlantic Meridional Overturning Circulation ; deglacial ; South Atlantic temperatures ; Mg/Li ; Cd/Ca
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...