ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5133
    Keywords: Hawai'i ; freshwater ; goby ; Lentipes ; amphidromy ; life cycle ; stream flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Constant pressure in Hawai'i to use limited freshwater resources has resulted in increasing concern for the future of the native stream fauna. Hawaiian freshwater gobies have an amphidromous life cycle with a marine larva period and require streams which flow continuously to the ocean for the critical reproductive periods and during recruitment. As such, the stream fauna is particularly sensitive to any anthropogenic perturbations which disrupt the continuity of stream flows. The objective of this 2-year study was to compare the life cycles of the goby, Lentipes concolor, from a heavily diverted stream on Moloka'i and a relatively undisturbed stream on Maui. In Makamaka'ole Stream, Maui, the population of L. concolor was reproductively active all year with females potentially spawning 2–3 times annually. The timing of spawning did not occur consistently during the wet or dry season but coincided with high stream flow conditions regardless of time-of-year. In Waikolu Stream, Moloka'i, the reproductive pattern was more variable with the number of reproductively active females ranging from 0% to 100%. In general the number of eggs was greater and egg size smaller for female L. concolor in Waikolu Stream than in Makamaka'ole Stream. However, female reproductive condition of L. concolor from Maui was consistently higher than from fish on Moloka'i. Reproduction of L. concolor in Makamaka'ole Stream was correlated with the seasonal pattern of flow rates with peaks in female reproductive condition associated with periods of elevated discharge. No correlation between reproduction and discharge occurred in Waikolu Stream. There were considerable differences between the magnitude of discharge in the two streams. Waikolu Stream experienced prolonged periods of extremely low flows which have become common since the Moloka'i Irrigation System began diverting water from the stream in 1960. In Makamaka'ole Stream, L. concolor was capable of reproducing throughout the year and adjusting fecundity in response to stream flow conditions. In contrast, the population in Waikolu Stream appeared to have a ’boom or bust' reproductive pattern; the population had reduced or no reproduction when stream flow conditions reached extreme low levels, but the population succesfully reproduced during higher flow months. The diversion structure in Waikolu Stream has dampened the natural seasonal discharge cycle, exacerbated natural low flow conditions, and increased the likelihood of prolonged periods of extremely low flow. Stream management practices in the Hawaiian Islands must take into account the complex life cycles and sensitivity to variable stream flow conditions of the native fauna.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5133
    Keywords: Hawai'i ; freshwater ; goby ; Lentipes ; amphidromy ; life cycle ; stream flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Constant pressure in Hawai'i to use limited freshwater resources has resulted in increasing concern for the future of the native stream fauna. Hawaiian freshwater gobies have an amphidromous life cycle with a marine larva period and require streams which flow continuously to the ocean for the critical reproductive periods and during recruitment. As such, the stream fauna is particularly sensitive to any anthropogenic perturbations which disrupt the continuity of stream flows. The objective of this 2-year study was to compare the life cycles of the goby, Lentipes concolor, from a heavily diverted stream on Moloka'i and a relatively undisturbed stream on Maui. In Makamaka'ole Stream, Maui, the population of L. concolor was reproductively active all year with females potentially spawning 2–3 times annually. The timing of spawning did not occur consistently during the wet or dry season but coincided with high stream flow conditions regardless of time-of-year. In Waikolu Stream, Moloka'i, the reproductive pattern was more variable with the number of reproductively active females ranging from 0% to 100%. In general the number of eggs was greater and egg size smaller for female L. concolor in Waikolu Stream than in Makamaka'ole Stream. However, female reproductive condition of L. concolor from Maui was consistently higher than from fish on Moloka'i. Reproduction of L. concolor in Makamaka'ole Stream was correlated with the seasonal pattern of flow rates with peaks in female reproductive condition associated with periods of elevated discharge. No correlation between reproduction and discharge occurred in Waikolu Stream. There were considerable differences between the magnitude of discharge in the two streams. Waikolu Stream experienced prolonged periods of extremely low flows which have become common since the Moloka'i Irrigation System began diverting water from the stream in 1960. In Makamaka'ole Stream, L. concolor was capable of reproducing throughout the year and adjusting fecundity in response to stream flow conditions. In contrast, the population in Waikolu Stream appeared to have a ‘boom or bust’ reproductive pattern; the population had reduced or no reproduction when stream flow conditions reached extreme low levels, but the population succesfully reproduced during higher flow months. The diversion structure in Waikolu Stream has dampened the natural seasonal discharge cycle, exacerbated natural low flow conditions, and increased the likelihood of prolonged periods of extremely low flow. Stream management practices in the Hawaiian Islands must take into account the complex life cycles and sensitivity to variable stream flow conditions of the native fauna.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...