ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: calmodulin antagonists ; calmodulin binding proteins ; osteoclast ; phosphodiesterase ; H+-ATPase ; trifluoperazine ; centchroman ; cischroman ; calcium ; bone resorption ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We studied effects of calmodulin antagonists on osteoclastic activity and calmodulin-dependent HCl transport. The results were compared to effects on the calmodulin-dependent phosphodiesterase and antagonist-calmodulin binding affinity. Avian osteoclast degradation of labeled bone was inhibited ∼40% by trifluoperazine or tamoxifen with half-maximal effects at 1-3 μM. Four benzopyrans structurally resembling tamoxifen were compared: d-centchroman inhibited resorption 30%, with half-maximal effect at ∼100 nM, cischroman and CDRI 85/287 gave 15-20% inhibition, and l-centchroman was ineffective. No benzopyran inhibited cell attachment or protein synthesis below 10 μM. However, ATP-dependent membrane vesicle acridine transport showed that H+-ATPase activity was abolished by all compounds with 50% effects at 0.25-1 μM. All compounds also inhibited calmodulin-dependent cyclic nucleotide phosphodiesterase at micromolar calcium. Relative potency varied with assay type, but d- and l-centchroman, surprisingly, inhibited both H+-ATPase and phosphodiesterase activity at similar concentrations. However, d- and l-centchroman effects in either assay diverged at nanomolar calcium. Of benzopyrans tested, only the d-centchroman effects were calcium-dependent. Interaction of compounds with calmodulin at similar concentrations were confirmed by displacement of labeled calmodulin from immobilized trifluoperazine. Thus, the compounds tested all interact with calmodulin directly to varying degrees, and the observed osteoclast inhibition is consistent with calmodulin-mediated effects. However, calmodulin antagonist activity varies between specific reactions, and free calcium regulates specificity of some interactions. Effects on whole cells probably also reflect other properties, including transport into cells. J. Cell. Biochem. 66:358-369, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...