ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 163-173, doi:10.1016/j.dsr2.2012.11.002.
    Description: A series of oceanographic surveys on Georges Bank document variability of populations of the toxic dinoflagellate Alexandrium fundyense on time scales ranging from synoptic to seasonal to interannual. Blooms of A. fundyense on Georges Bank can reach concentrations on the order of 104 cells l-1, and are generally bank-wide in extent. Georges Bank populations of A. fundyense appear to be quasi-independent of those in the adjacent coastal Gulf of Maine, insofar as they occupy a hydrographic niche that is colder and saltier than their coastal counterparts. In contrast to coastal populations that rely on abundant resting cysts for bloom initiation, very few cysts are present in the sediments on Georges Bank. Bloom dynamics must therefore be largely controlled by the balance between growth and mortality processes, which are at present largely unknown for this population. Based on correlations between cell abundance and nutrient distributions, ammonium appears to be an important source of nitrogen for A. fundyense blooms on Georges Bank.
    Description: We appreciate financial support of the National Oceanic Atmospheric Administration (grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program) and the Woods Hole Center for Oceans and Human Health through National Science Foundation grants OCE-0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grant 1P50-ES01274201.
    Keywords: Phytoplankton ; Population dynamics ; Red tides ; Paralytic shellfish poisoning ; USA ; Gulf of Maine ; Georges Bank
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 2698-2714, doi:10.1016/j.dsr2.2005.06.021.
    Description: Observations of Alexandrium fundyense in the Gulf of Maine indicate several salient characteristics of the vegetative cell distributions: patterns of abundance are gulf-wide in geographic scope; their main features occur in association with the Maine Coastal Current; and the center of mass of the distribution shifts upstream from west to east during the growing season from April to August. The mechanisms underlying these aspects are investigated using coupled physical-biological simulations that represent the population dynamics of A. fundyense within the seasonal mean flow. A model that includes germination, growth, mortality, and nutrient limitation is qualitatively consistent with the observations. Germination from resting cysts appears to be a key aspect of the population dynamics that confines the cell distribution near the coastal margin, as simulations based on a uniform initial inoculum of vegetative cells across the Gulf of Maine produces blooms that are broader in geographic extent than is observed. In general, cells germinated from the major cyst beds (in the Bay of Fundy and near Penobscot and Casco Bays) are advected in the alongshore direction from east to west in the coastal current. Growth of the vegetative cells is limited primarily by temperature from April through June throughout the gulf, whereas nutrient limitation occurs in July and August in the western gulf. Thus the seasonal shift in the center of mass of cells from west to east can be explained by changing growth conditions: growth is more rapid in the western gulf early in the season due to warmer temperatures, whereas growth is more rapid in the eastern gulf later in the season due to severe nutrient limitation in the western gulf during that time period. A simple model of encystment based on nutrient limitation predicts deposition of new cysts in the vicinity of the observed cyst bed offshore of Casco and Penobscot Bays, suggesting a pathway of re-seeding the bed from cells advected downstream in the coastal current. A retentive gyre at the mouth of the Bay of Fundy tends to favor re-seeding that cyst bed from local populations.
    Description: We gratefully acknowledge the support of the US ECOHAB Program, sponsored by NOAA, NSF, EPA, NASA, and ONR.
    Keywords: Phytoplankton ; Population dynamics ; Red tides ; Paralytic shellfish poisoning ; USA ; Gulf of Maine
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 1990936 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 3522–3541, doi:10.1002/2014JC010492.
    Description: A data assimilative ocean circulation model is used to hindcast the Gulf of Maine [GOM) circulation in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Validation against independent observations shows that the model skill is significantly improved after data assimilation. The data-assimilative model hindcast reproduces the temporal and spatial evolution of the ocean state, showing that a sea level depression southwest of the Scotian Shelf played a critical role in shaping the gulf-wide circulation. Heat budget analysis further demonstrates that both advection and surface heat flux contribute to temperature variability. The estimated time scale for coastal water to travel from the Scotian Shelf to the Jordan Basin is around 60 days, which is consistent with previous estimates based on in situ observations. Our study highlights the importance of resolving upstream and offshore forcing conditions in predicting the coastal circulation in the GOM.
    Description: Research support was provided by National Oceanic and Atmospheric Administration (NOAA) grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program. RH and DJM were also supported by NOAA grant NA11NOS4780023 under the PCMHAB program. YL was partly supported by Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the George D. Grice Postdoctoral Scholarship.
    Description: 2015-11-19
    Keywords: Gulf of Maine ; Circulation modeling ; Data assimilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07039, doi:10.1029/2007JC004601.
    Description: An extensive Alexandrium fundyense bloom occurred along the coast of the Gulf of Maine in late spring and early summer 2005. To understand the physical aspects of bloom's initiation and development, in situ observations from both a coast-wide ship survey and the coastal observing network were used to characterize coastal circulation and hydrography during that time period. Comparisons between these in situ observations and their respective long-term means revealed anomalous ocean conditions during May 2005: waters were warmer and fresher coast-wide owing to more surface heating and river runoff; coastal currents were at least 2 times stronger than their climatological means. Surface winds were also anomalous in the form of both episodic bursts of northeast winds and a downwelling-favorable mean condition. These factors may have favored more vigorous along-shore transport and nearshore aggregation of toxic A. fundyense cells (a red tide) in 2005.
    Description: Research support was provided through the Woods Hole Center for Oceans and Human Health, National Science Foundation (NSF) grant OCE-0430723 and National Institute of Environmental Health Science (NIEHS) grant 1-P50-ES012742-01, ECOHAB program through NSF grant OCE-9808173 and NOAA grant NA96OP0099, and GOMTOX program through NOAA NA06NOS4780245.
    Keywords: Coastal circulation ; Gulf of Maine ; Biophysical interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07040, doi:10.1029/2007JC004602.
    Description: A coupled physical/biological modeling system was used to hindcast a massive Alexandrium fundyense bloom that occurred in the western Gulf of Maine in 2005 and to investigate the relative importance of factors governing the bloom's initiation and development. The coupled system consists of a state-of-the-art, free-surface primitive equation Regional Ocean Modeling System (ROMS) tailored for the Gulf of Maine (GOM) using a multinested configuration, and a population dynamics model for A. fundyense. The system was forced by realistic momentum and buoyancy fluxes, tides, river runoff, observed A. fundyense benthic cyst abundance, and climatological nutrient fields. Extensive comparisons were made between simulated (both physical and biological) fields and in situ observations, revealing that the hindcast model is capable of reproducing the temporal evolution and spatial distribution of the 2005 bloom. Sensitivity experiments were then performed to distinguish the roles of three major factors hypothesized to contribute to the bloom: (1) the high abundance of cysts in western GOM sediments; (2) strong ‘northeaster' storms with prevailing downwelling-favorable winds; and (3) a large amount of fresh water input due to abundant rainfall and heavy snowmelt. Model results suggest the following. (1) The high abundance of cysts in western GOM was the primary factor of the 2005 bloom. (2) Wind-forcing was an important regulator, as episodic bursts of northeast winds caused onshore advection of offshore populations. These downwelling favorable winds accelerated the alongshore flow, resulting in transport of high cell concentrations into Massachusetts Bay. A large regional bloom would still have happened, however, even with normal or typical winds for that period. (3) Anomalously high river runoff in 2005 resulted in stronger buoyant plumes/currents, which facilitated the transport of cell population to the western GOM. While affecting nearshore cell abundance in Massachusetts Bay, the buoyant plumes were confined near to the coast, and had limited impact on the gulf-wide bloom distribution.
    Description: Research support was provided through the Woods Hole Center for Oceans and Human Health, National Science Foundation (NSF) grant OCE-0430723 and National Institute of Environmental Health Science (NIEHS) grant 1-P50-ES012742-01, ECOHAB program through NSF grant OCE-9808173 and NOAA grant NA96OP0099, and GOMTOX program through NOAA grant NA06NOS4780245.
    Keywords: Gulf of Maine ; Harmful algal bloom ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Nutrient and hydrology data
    Description: Nutrient and hydrology data from CTD bottles from 2012 to 2019 in the Gulf of Maine. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/834444
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1314642, NSF Division of Ocean Sciences (NSF OCE) OCE-1840381, National Institutes of Health (NIH) NIH-P01ES021923, National Institutes of Health (NIH) NIH-P01ES028938
    Keywords: Gulf of Maine ; Hydrological data ; Nutrient data
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K. A., McGillicuddy Jr, D. J., Ralston, D. K., & Shankar, S. Investigating Pseudo-nitzschia australis introduction to the Gulf of Maine with observations and models. Continental Shelf Research, 228, (2021): 104493, https://doi.org/10.1016/j.csr.2021.104493.
    Description: In 2016, an unprecedented Pseudo-nitzschia australis bloom in the Gulf of Maine led to the first shellfishery closures due to domoic acid in the region's history. In this paper, potential introduction routes of P. australis are explored through observations, a hydrodynamic model, and a Lagrangian particle tracking model. Based on particle tracking experiments, the most likely source of P. australis to the Gulf of Maine was the Scotian Shelf. However, in 2016, connectivity between the Scotian Shelf and the bloom region was not significantly different from the other years between 2012 and 2019, nor were temperature conditions more favorable for P. australis growth. Observations indicated changes on the Scotian Shelf in 2016 preceded the introduction of P. australis: increased bottom salinity and decreased surface salinity. The increased bottom salinity on the shelf may be linked to anomalously saline water observed near the coast of Maine in 2016 via transport through Northeast Channel. The changes in upstream water mass properties may be related to the introduction of P. australis, and could be the result of either increased influence of the Labrador Current or increased outflow from the Gulf of St. Lawrence. The ultimate source of P. australis remains unknown, although the species has previously been observed in the eastern North Atlantic, and connectivity across the ocean is possible via a subpolar route. Continued and increased monitoring is warranted to track interannual Pseudo-nitzschia persistence in the Gulf of Maine, and sampling on the Scotian Shelf should be conducted to map upstream P. australis populations.
    Description: This research was funded by the National Science Foundation (Grant Number OCE-1840381), the National Institute of Environmental Health Sciences (Grant Number 1P01ES028938), the Woods Hole Center for Oceans and Human Health, and the Academic Programs Office of the Woods Hole Oceanographic Institution.
    Keywords: Gulf of Maine ; Pseudo-nitzschia australis ; Harmful algal blooms ; Lagrangian particle tracking ; ROMS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 329–349, doi:10.1016/j.dsr2.2013.04.013.
    Description: As part of the NOAA ECOHAB funded Gulf of Maine Toxicity (GOMTOX)1 project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin composition, and concentration in quantitatively-sampled size-fractionated (20–64, 64–100, 100–200, 200–500, and 〉500 μm) particulate water samples, and the community composition of potential grazers of A. fundyense in these size fractions, at multiple depths (typically 1, 10, 20 m, and near-bottom) during 10 large-scale sampling cruises during the A. fundyense bloom season (May–August) in the coastal Gulf of Maine and on Georges Bank in 2007, 2008, and 2010. Our findings were as follows: (1) when all sampling stations and all depths were summed by year, the majority (94%±4%) of total PSP toxicity was contained in the 20–64 μm size fraction; (2) when further analyzed by depth, the 20–64 μm size fraction was the primary source of toxin for 97% of the stations and depths samples over three years; (3) overall PSP toxin profiles were fairly consistent during the three seasons of sampling with gonyautoxins (1, 2, 3, and 4) dominating (90.7%±5.5%), followed by the carbamate toxins saxitoxin (STX) and neosaxitoxin (NEO) (7.7%±4.5%), followed by n-sulfocarbamoyl toxins (C1 and 2, GTX5) (1.3%±0.6%), followed by all decarbamoyl toxins (dcSTX, dcNEO, dcGTX2&3) (〈1%), although differences were noted between PSP toxin compositions for nearshore coastal Gulf of Maine sampling stations compared to offshore Georges Bank sampling stations for 2 out of 3 years; (4) surface cell counts of A. fundyense were a fairly reliable predictor of the presence of toxins throughout the water column; and (5) nearshore surface cell counts of A. fundyense in the coastal Gulf of Maine were not a reliable predictor of A. fundyense populations offshore on Georges Bank for 2 out of the 3 years sampled.
    Description: Vangie Shue was supported through the FDA and also through the Thomas Jefferson High School for Science and Technology Mentorship Program. Research support was provided by National Oceanic and Atmospheric Administration Grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program. BAK, DJM, and DMA were partially supported by the Woods Hole Center for Oceans and Human Health through National Science Foundation Grants OCE-0430724 and OCE-0911031 and National Institute of Environmental Health Sciences Grant 1P50-ES01274201.
    Keywords: Harmful algal bloom ; PSP toxins ; Alexandrium sp. ; Vectorial intoxication ; Gulf of Maine ; Georges Bank
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 96–111, doi:10.1016/j.dsr2.2013.11.003.
    Description: The life cycle of Alexandrium fundyense in the Gulf of Maine includes a dormant cyst stage that spends the winter predominantly in the bottom sediment. Wave-current bottom stress caused by storms and tides induces resuspension of cyst-containing sediment during winter and spring. Resuspended sediment could be transported by water flow to different locations in the Gulf and the redistribution of sediment containing A. fundyense cysts could alter the spatial and temporal manifestation of its spring bloom. The present study evaluates model near-bottom flow during storms, when sediment resuspension and redistribution are most likely to occur, between October and May when A. fundyense cells are predominantly in cyst form. Simulated water column sediment (mud) concentrations from representative locations of the Gulf are used to initialize particle tracking simulations for the period October 2010–May 2011. Particles are tracked in full three-dimensional model solutions including a sinking velocity characteristic of cyst and aggregated mud settling (0.1 mm s−1). Although most of the material was redeposited near the source areas, small percentages of total resuspended sediment from some locations in the western (~4%) and eastern (2%) Maine shelf and the Bay of Fundy (1%) traveled distances longer than 100 km before resettling. The redistribution changed seasonally and was sensitive to the prescribed sinking rate. Estimates of the amount of cysts redistributed with the sediment were small compared to the inventory of cysts in the upper few centimeters of sediment but could potentially have more relevance immediately after deposition.
    Description: Research support to all authors, except DJM and VAS, was provided by U.S. Geological Survey. DJM gratefully acknowledges financial support of the National Oceanic and Atmospheric Administration (Grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program) and the Woods Hole Center for Oceans and Human Health through National Science Foundation Grant OCE-1314642 and National Institute of Environmental Health Sciences Grant 1P01ES021923-01. VAS was supported by the North East Consortium Grant NA05NMF4721057.
    Keywords: Sediment connectivity ; Near-bottom circulation ; Harmful Algal Bloom cysts ; Gulf of Maine ; Alexandrium fundyense ; Particle tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 174-184, doi:10.1016/j.dsr2.2013.05.011.
    Description: In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.
    Description: The R/V Tioga sampling effort was facilitated by event response funding from the National Oceanic Atmospheric Administration (NOAA), National Ocean Service, Center for Sponsored Coastal Ocean Research, through NOAA Cooperative Agreement NA17RJ1223. Additional support for follow-up analysis and synthesis was provided by NOAA grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program and the Woods Hole Center for Oceans and Human Health through National Science Foundation grants OCE- 0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grant 1P50-ES01274201.
    Keywords: Phytoplankton ; Population dynamics ; Red tides ; Cysts ; Paralytic shellfish poisoning ; USA ; Gulf of Maine
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...