ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We examine the seasonal behavior of ozone by using measurements from various instruments including ozonesondes, Aura Microwave Limb Sounder, and Stratospheric Aerosol and Gas Experiment II. We find that the magnitude of the annual variation in ozone, as a percentage of the mean ozone, exhibits a maximum at or slightly above the tropical tropopause. The maximum is larger in the northern tropics than in the southern tropics, and the annual maximum of ozone in the southern tropics occurs 2 months later than that in the northern tropics, in contrast to usual assumption that the tropics can be treated as a horizontally homogeneous region. The seasonal cycles of ozone and other species in this part of the lower stratosphere result from a combination of the seasonal variation of the Brewer-Dobson circulation and the seasonal variation of tropical and midlatitude mixing. In the Northern Hemisphere, the impacts of upwelling and mixing between the tropics and midlatitudes on ozone are in phase and additive. In the Southern Hemisphere, they are not in phase. We apply a tropical leaky pipe model independently to each hemisphere to examine the relative roles of upwelling and mixing in the northern and southern tropical regions. Reasonable assumptions of the seasonal variation of upwelling and mixing yield a good description of the seasonal magnitude and phase in both the southern and northern tropics. The differences in the tracers and transport between the northern and southern tropical stratospheres suggest that the paradigm of well-mixed tropics needs to be revised to consider latitudinal variations within the tropics.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN13238 , Journal of Geophysical Research; 119; 10; 6196-6206
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number and particle size distribution are within variability of data obtained from multiple airborne in-situ measurements. Simulations suggest Rim Fire smoke may block 4-6 of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m(exp -2) per unit aerosol optical depth in the mid-visible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at mid-visible by 0.04 suggests the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with one-degree resolution with overall good skill, though that resolution is still not sufficient to resolve the smoke peak near the source region.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN41437 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 121; 12; 7079–7087
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN57094 , Environmental Research Letters (e-ISSN 1748-9326); 13; 5; 054024; No. 5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present an overview of state-of-the-art chemistry-climate and chemistry transport models that are used within phase 1 of the Chemistry-Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain inter-model differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN55204 , Geoscientific Model Development (ISSN 1991-959X) (e-ISSN 1991-9603); 10; 2; 639-671
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Satellite observations of in-cloud ozone concentrations from the Ozone Monitoring Instrument and Microwave Limb Sounder instruments show substantial differences from background ozone concentrations. We develop a method for comparing a free-running chemistry-climate model (CCM) to in-cloud and background ozone observations using a simple criterion based on cloud fraction to separate cloudy and clear-sky days. We demonstrate that the CCM simulates key features of the in-cloud versus background ozone differences and of the geographic distribution of in-cloud ozone. Since the agreement is not dependent on matching the meteorological conditions of a specific day, this is a promising method for diagnosing how accurately CCMs represent the relationships between ozone and clouds, including the lower ozone concentrations shown by in-cloud satellite observations. Since clouds are associated with convection as well as changes in chemistry, we diagnose the tendency of tropical ozone at 400 hPa due to chemistry, convection and turbulence, and large-scale dynamics. While convection acts to reduce ozone concentrations at 400 hPa throughout much of the tropics, it has the opposite effect over highly polluted regions of South and East Asia.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN55129 , Journal of Geophysical Research Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 21; 11948-11960
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN55184 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 2; 1091-1114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-23
    Description: 1998-2016 ozone trends in the lower stratosphere (LS) are examined using the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) and related NASA products. After removing biases resulting from step-changes in the MERRA-2 ozone observations, a discernible negative trend of -1.67+/-0.54 Dobson units per decade (DU/decade) is found in the 10-km layer above the tropopause between 20 deg N and 60 deg N. A weaker but statistically significant trend of -1.17+/-0.33 DU/decade exists between 50 deg S and 20 deg S. In the Tropics, a positive trend is seen in a 5-km layer above the tropopause. Analysis of an idealized tracer in a model simulation constrained by MERRA-2 meteorological fields provides strong evidence that these trends are driven by enhanced isentropic transport between the tropical (20 deg S20 deg N) and extratropical LS in the past two decades. This is the first time that a reanalysis dataset has been used to detect and attribute trends in lower stratospheric ozone. Plain Language Summary. Stratospheric ozone shields the biosphere from harmful ultraviolet radiation and affects the Earths radiative budget. Observational data show evidence that concentrations of ozone in the upper stratosphere have increased in the last 15 years. This is an expected result of the implementation of the Montreal Protocol and its amendments banning emissions of ozone depleting substances into the atmosphere. The evolution of stratospheric ozone is also impacted by climate change through its dependence on temperature and circulation, which can be different at different altitudes. These effects are less well understood. This study uses NASAs data and computer models to analyze the long-term changes in ozone since 1998. It is shown that the increase in the upper stratospheric ozone has been partially offset by a small but discernible decline of ozone concentrations in the lowermost stratosphere, in qualitative agreement with one recent study. A chemistry model simulation forced by meteorological data provides strong evidence that the primary mechanism driving this negative trend is an intensification of transport of ozone-poor air from the tropics into the extratropics, indicative of a systematic change in the lower-stratospheric circulation between 1998 and 2016.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN56308 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 10; 5166-5176
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...