ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-23
    Description: The significant ambiguities inherent in the determination of a particular vertical rain intensity profile from a given time profile of radar echo powers measured by a downward-looking (spaceborne or airborne) radar at a single attenuating frequency are well documented. Indeed, one already knows that by appropriately varying the parameters of the reflectivity-rain rate (Z-R) and/or attenuation-rain rate (k- R) relationships one can produce several substantially different rain-rate profiles that would produce the same radar power profile. Imposing the additional constraint that the path-averaged rain rate be a given fixed number does reduce the ambiguities but falls far short of eliminating them. While formulas to generate all mutually ambiguous rain-rate profiles from a given profile of received radar reflectivities have already been derived, there remains to be produced a quantitative measure to assess how likely each of these profiles is, what the appropriate "average" profile should be, and what the "variance" of these multiple solutions is. To do this, one needs to spell out the stochastic constraints that can allow us to make sense of the words "average" and "variance" in a mathematically rigorous way. Such a quantitative approach would be particularly well suited for such systems as the planned precipitation radar of the Tropical Rainfall Measuring Mission (TRMM). Indeed, one would then be able to use the radar reflectivities measured by the TRMM radar to estimate the rain-rate profile that would most likely have produced the measurements, as well as the uncertainty in the estimated rain rates as a function of range. Such an optimal approach is described in this paper.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 35; No. 2; 213-228
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Current passive-microwave rain-retrieval methods are largely based on databases built off-line using cloud models. The vertical distribution of hydrometeors within the cloud has a large impact on upwelling brightness temperatures ([31,[5]). Thus, a forward radiative transfer model can predict off-line the radiance associated with different rain scenarios. To estimate the rain from measured brightness temperatures, one simply looks for the rain scenario whose associated radiances are closest to the measurements. To understand the uncertainties in this process, we first study the dependence of the simulated brightness temperatures on different hydrometeor size distribution (DSD) models. We then analyze the marginal and joint distributions of the radiances observed by the Tropical Rainfall Measuring Mission satellite and of those in the databases used in the TRMM rain retrievals. We finally calculate the covariances of the rain profiles and brightness temperatures in the TRMM passive-microwave database and derive a simple parametric model for the conditional uncertainty, given measured radiances. These results are used to characterize the uncertainty inherent in the passive-microwave retrieval.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-23
    Description: This paper addresses the problem of finding a parametric form for the raindrop size distribution (DSD) that(1) is an appropriate model for tropical rainfall, and (2) involves statistically independent parameters. Such a parameterization is derived in this paper. One of the resulting three "canonical" parameters turns out to vary relatively little, thus making the parameterization particularly useful for remote sensing applications. In fact, a new set of r drop-size-distribution-based Z-R and k-R relations is obtained. Only slightly more complex than power laws, they are very good approximations to the exact radar relations one would obtain using Mie scattering. The coefficients of the new relations are directly related to the shape parameters of the particular DSD that one starts with. Perhaps most important, since the coefficients are independent of the rain rate itself, the relations are ideally suited for rain retrieval algorithms.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 35; No. 1; 3-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-23
    Description: This paper describes a computationally efficient nearly optimal Bayesian algorithm to estimate rain (and drop size distribution) profiles, given a radar reflectivity profile at a single attenuating wavelength. In addition to estimating the averages of all the mutually ambiguous combinations of rain parameters that can produce the data observed, the approach also calculates the n-ns uncertainty in its estimates (this uncertainty thus quantifies "the amount of ambiguity" in the "solution"). The paper also describes a more general approach that can make estimates based on a radar reflectivity profile together with an approximate measurement of the path-integrated attenuation, or a radar reflectivity profile and a set of passive microwave brightness temperatures. This more general "combined" algorithm is currently being adapted for the Tropical Rainfall Measuring Mission.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 35; No. 2; 229-242
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: The significant ambiguities inherent in the determination of a particular vertical rain intensity profile from a given time profile of radar echo powers measured by a downward-looking (spaceborne or airborne) radar at a single attenuating frequency are well-documented. Indeed, one already knows that by appropriately varying the parameters of the reflectivity-rain-rate (Z - R) and/or attenuation-rain-rate (k - R) relationships, one can produce several substantially different hypothetical rain rate profiles which would have the same radar power profile. Imposing the additional constraint that the path-averaged rain-rate be a given fixed number does reduce the ambiguities but falls far short of eliminating them. While we now know how to generate as many mutually ambiguous rain-rate profiles from a given profile of received radar reflectivities as we like, there remains to produce a quantitative measure to assess how likely each of these profiles is, what the appropriate 'average' profile should be, and what the 'variance' of these multiple solutions is. Of course, in order to do this, one needs to spell out the stochastic constraints that can allow us to make sense of the words 'average' and 'variance' in a mathematically rigorous way. Such a quantitative approach would be particularly well-suited for such systems as the proposed Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM). Indeed, one would then be able to use the radar reflectivities measured by the TRMM radar from one particular look in order to estimate the most likely rain-rate profile that would have produced the measurements, as well as the uncertainty in the estimated rain-rates as a function of range. Such an optimal approach is described in this paper.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: The precipitation radar planned for the Tropical Rainfall Measuring Mission (TRMM) will be the first of its kind to measure vertical rainfall distributions from space. The TRMM radar will scan +/- 20 degrees across the nadir track. The range-gated backscattering powers over the entire scan swath will be measured, classified (rain versus no-rain), averaged, and processed to derive the rainfall rates. With this observation scheme, there are two major reasons why it is important to know the rain-perturbed backscattering coefficient of the surface background (tilde over sigma_0)...
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society, 26th Intl. Conf. on Radar Meteorology; Norman, OK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: An interferometer-type passive microwave radiometer based on MMIC receiver technology and a thinned array antenna design is being developed under the Instrument Incubator Program (TIP) on a project entitled the Lightweight Rainfall Radiometer (LRR). The prototype single channel aircraft instrument will be ready for first testing in 2nd quarter 2003, for deployment on the NASA DC-8 aircraft and in a ground configuration manner; this version measures at 10.7 GHz in a crosstrack imaging mode. The design for a two (2) frequency preliminary space flight model at 19 and 35 GHz (also in crosstrack imaging mode) has also been completed, in which the design features would enable it to fly in a bore-sighted configuration with a new dual-frequency space radar (DPR) under development at the Communications Research Laboratory (CRL) in Tokyo, Japan. The DPR will be flown as one of two primary instruments on the Global Precipitation Measurement (GPM) mission's core satellite in the 2007 time frame. The dual frequency space flight design of the ERR matches the APR frequencies and will be proposed as an ancillary instrument on the GPM core satellite to advance space-based precipitation measurement by enabling better microphysical characterization and coincident volume data gathering for exercising combined algorithm techniques which make use of both radar backscatter and radiometer attenuation information to constrain rainrate solutions within a physical algorithm context. This talk will discuss the design features, performance capabilities, applications plans, and conical/polarametric imaging possibilities for the LRR, as well as a brief summary of the project status and schedule.
    Keywords: Meteorology and Climatology
    Type: Earth Science Technology Conference 2002 (ESTC-2002); Jun 11, 2002 - Jun 13, 2002; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight architecture. Following this introduction, we focus specifically on the last topic, that being an analysis which leads to an optimal flight architecture dictated in part by science requirements but constrained by allowable orbital mechanics, instrument scan patterns, and antenna aperture properties. Because the optimal architecture involves an interplay between orbit mechanics and instrument specifications, it is important to recognize that in attempting to serve various scientific themes, the final optimal architecture will represent a compromise concerning dynamic range, spatial resolution, sampling interval, pointing, beam coincidence, and measurement uncertainty. Moreover, cost becomes a major factor in seeking the optimal architecture through the pathways of antenna and instrument scan designs, as well as propulsion requirements associated with the orbit heights of various "constellation" members. Although the results presented at the IGARSS-2001 meeting will likely not be the fully refined flight architecture specifications, they are expected to be nearly complete.
    Keywords: Meteorology and Climatology
    Type: IEEE IGARSS 2001 Meeting; Jul 09, 2001 - Jul 13, 2001; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Under NASA's Earth Science Technology Program, a novel mission concept has been developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit: "NEXRAD in Space" (NIS). By operating in the Geostationary Earth Orbit (GEO), NIS would enable rapid-update sampling (less than or equal to 1 hour cadence) of three dimenional fields of 35 GHz (Ka-band) radar reflectivity factor (Z) and line-of-sight Doppler velocity (VD) profiles, at mesoscale horizontal resolutions (approx. 10 km) over a circular Earth region of approximately 5300 km in diameter (equivalent to much of an oceanic basin, such as the Atlantic). NIS GEO-radar concept was chosen as one of only four potential post-2020 missions for the Weather Focus area in the 2007-2016 NASA Science Mission Directorate (SMD) Science Plan. The results of the first project aiming at developing the NIS concept highlighted the enormous potential of such mission, and the technological challenges presented by it. In essence, it is because of its rapid-cadence capability that NIS science planning is focusing on hurricane monitoring and prediction. Hurricanes, or generically tropical cyclones (TCs), have always been among the most devastating natural phenomena. This has been painfully reiterated in recent years with a number of powerful TCs landfalling in North America and elsewhere. In April 2007, the first NIS Science Workshop was convened at the University of Miami to galvanize the scientific community's interest in NIS's measurement capabilities for improved TC monitoring and prediction. The general consensus of the workshop was that a GEO Doppler radar would provide a major breakthrough in regards to the observation of TCs, and, when combined with cloud-resolving numerical weather prediction (NWP) models. This paper presents brief summaries of the instrument concept, the current technology status, the anticipated impacts on hurricane monitoring and model prediction, and the future science and technology roadmap.
    Keywords: Meteorology and Climatology
    Type: Advanced RF Sensors and Remote Sensing Instruments (ARSI); Sep 13, 2011 - Sep 15, 2011; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: Global rainfall is the primary distributor of latent heat through atmospheric circulation. The recently launched Tropical Rainfall Measuring Mission satellite is dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided. exciting, new data on the 3-D rain structures for a variety of scientific uses. However, due to the limited mission lifetime and the dynamical nature of precipitation, the TRMM PR data acquired cannot address all the issues associated with precipitation, its related processes, and the long-term climate variability. In fact, a number of new post-TRMM mission concepts have emerged in response to the recent NASA's request for new ideas on Earth science missions at the post 2002 era. This paper will discuss the system concepts for two advanced, spaceborne rainfall profiling radars. In the first portion of this paper, we will present a system concept for a second-generation spaceborne precipitation radar for operations at the Low Earth Orbit (LEO). The key PR-2 electronics system will possess the following capabilities: (1) A 13.6/35 GHz dual frequency radar electronics that has Doppler and dual-polarization capabilities. (2) A large but light weight, dual-frequency, wide-swath scanning, deployable antenna. (3) Digital chirp generation and the corresponding on-board pulse compression scheme. This will allow a significant improvement on rain signal detection without using the traditional, high-peak-power transmitters and without sacrificing the range resolution. (4) Radar electronics and algorithm to adaptively scan the antenna so that more time can be spent to observe rain rather than clear air. and (5) Built-in flexibility on the radar parameters and timing control such that the same radar can be used by different future rain missions. This will help to reduce the overall instrument development costs. In the second portion of this paper, we will present a system concept for a geostationary rainfall monitoring radar for operations at the geosynchronous Earth Orbit (GEO). In particular, the science requirements, the observational strategy, the instrument design, and the required technologies will be discussed.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...