ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • METEOROLOGY AND CLIMATOLOGY  (3)
  • Geosciences (General)  (1)
  • 1
    Publication Date: 2011-08-24
    Description: The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 3; p. 213-216
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Lagrangian material line simulations are performed using U.K. Meteorological Office simulated winds and temperatures to examine mixing processes in the middle- and lower-stratospheric polar night jet during the 1992 Southern Hemisphere spring and Northern Hemisphere winter. The Lagrangian simulations are undertaken to provide insight into the effects of mixing within the polar night jet on observations of the polar vortex made by instruments onboard the Upper Atmosphere Research Satellite (UARS) during these periods. A moderate to strong kinematic barrier to large-scale isentropic exchange, similar to the barrier identified in General Circulation Model (GCM) simulations, is identified during both of these periods. Characteristic timescales for mixing by large-scale isentropic motions within the polar night jet range from 20 days in the Southern Hemisphere lower stratosphere to years in the Northern Hemisphere middle stratosphere. The long mixing timescales found in the Northern Hemisphere polar night jet do not persist. Instead, the Northern Hemisphere kinematic barriers are broken down as part of the large-scale stratospheric response to a strong tropospheric blocking event. A series of Lagrangian experiments are conducted to investigate the sensitivity of the kinematic barrier to diabatic effects and to small-scale inertial gravity wave motions. Differential diabatic descent is found to have a significant impact on mixing processes within the Southern Hemisphere middle-stratospheric jet core. The interaction between small-scale displacements by idealized, inertial gravity waves and the large-scale flow is found to have a significant impact on mixing within the polar night jet in both hemispheres. These sensitivity experiments suggest that scales of motion that are unresolved in global assimilated datasets may contribute to mass exchange across the kinematic barrier to large-scale isentropic motion.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 51; 20; p. 2957-2972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The distribution of dehydrated air in the middle and lower stratosphere during the 1992 Southern Hemisphere spring is investigated using Halogen Occultation Experiment (HALOE) observations and trajectory techniques. Comparisons between previously published Version 9 and the improved Version 16 retrievals on the 700-K isentropic surface show very slight (0.05 ppmv) increases in Version 16 CH4 relative to Version 9 within the polar vortex. Version 16 H2O mixing ratios show a reduction of 0.5 ppmv relative to Version 9 within the polar night jet and a reduction of nearly 1.0 ppmv in middle latitudes when compared to Version 9. The version 16 HALOE retrievals show low mixing ratios of total hydrogen (2CH4 + H2O) within the polar vortex on both 700 and 425 K isentropic surfaces relative to typical middle-stratospheric 2CH4 + H2O mixing ratios. The low 2CH4 + H2O mixing ratios are associated with dehydration. Slight reductions in total hydrogen, relative to typical middle-stratospheric values, are found at these levels throughout the Southern Hemisphere during this period. Trajectory calculations show that middle-latitude air masses are composed of a mixture of air from within the polar night jet and air from middle latitudes. A strong kinematic barrier to large-scale exchange is found on the poleward flank of the polar night jet at 700 K. A much weaker kinematic barrier is found at 425 K. The impact of the finite tangent pathlength of the HALOE measurements is investigated using an idealized tracer distribution. This experiment suggests that HALOE should be able to resolve the kinematic barrier, if it exists.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 51; 20; p. 2931-2941
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOSchem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7% and 7.6%, respectively) compared to that from LT (64.1%), but the relative ozone concentration coming from LS and UT is high (38.4% and 20.95%, respectively) compared to that from LT (17.7%). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.
    Keywords: Geosciences (General)
    Type: ARC-E-DAA-TN29721 , Earth Science Division Poster Session; Feb 10, 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...