ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDFs) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6 deg. x 11.25 deg. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground-based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been reprocessed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase-space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDFs are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a remarkable agreement within the uncertainties of the measurements, with the results obtained by the Cluster/PEACE electron spectrometers. The data analyzed was selected because it represented a potential reconnection event as currently published.
    Keywords: Geophysics
    Type: American Geophysical Union Conference; Dec 15, 2008 - Dec 20, 2008; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Rapid thermospheric flows can significantly enhance the estimates of the atmospheric loss rate and the structure of the atmospheric corona of a planetary body. In particular, rapid horizontal flow at the exobase can increase the corresponding constituent escape rate. Here we show that such corrections, for both thermal and non-thermal escape, cannot be ignored when calculating the escape of methane from Titan, for which drastically different rates have been proposed. Such enhancements are also relevant to Pluto and exoplanets.
    Keywords: Geophysics
    Type: GSFC.ABS.6226.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: In a recent paper, Sittler et al., (2010) presented new results on the T9 encounter by the Cassini spacecraft when it passed through Titan s induced magnetotail. Two crossings were observed, but the first crossing, event 1, is thought to be out flowing ionosphere plasma. T9 is ideal for CAPS IMS probing of the ionosphere, since the ion densities at the higher altitudes of the T9 flyby approx. 10,000 km, allows measurements to be made down to 1 eV without saturating its detectors. Sittler et al., (2010) reported possible detection of NH4+ ions, but favored the detection of CH5+ and C2H5+ ions. In this report we investigate both the medium mass resolution (straight through (ST)) and high mass resolution (linear electric field (LEF)) composition data from the Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS). We present a more in depth analysis of the composition data and make comparisons with ionospheric models including nitrogen chemistry such as that by Vuitton et al. (2007). The LEF data does not support NH4+ identification, but favors a CH5+ and C2H5+ identification, but also molecular ions C2N+ and CH2NH2+ are chemically allowed possibilities.
    Keywords: Geophysics
    Type: European Geosciences Union General Assembly 2011; Apr 02, 2011 - Apr 09, 2011; Vienna; Austria|Geophysical Research Abstracts; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...