ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: To achieve the goals of the VLBI2010 project and the Global Geodetic Observing System (GGOS), an automated monitoring of the reference points of the various geodetic space techniques, including Very Long Baseline Interferometry (VLBI), is desirable. The resulting permanent monitoring of the local-tie vectors at co-location stations is essential to obtain the sub-millimeter level in the combinations. For this reason a monitoring system was installed at the Geodetic Observatory Wettzell by the Geodetic Institute of the University of Karlsruhe (GIK) to observe the 20m VLBI radio telescope from May to August 2009. A specially developed software from GIK collected data from automated total station measurements, meteorological sensors, and sensors in the telescope monument (e.g., Invar cable data). A real-time visualization directly offered a live view of the measurements during the regular observation operations. Additional scintillometer measurements allowed refraction corrections during the post-processing. This project is one of the first feasibility studies aimed at determining significant deformations of the VLBI antenna due to, for instance, changes in temperature.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 133-137; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Formed in the gravity regime, complex craters are larger than their simple crater equivalents, due to a combination of slumping and uplift. Just how much larger is a matter of great interest for, for example, age dating studies. We examine three empirical scaling laws for complex crater size, examining their strengths and weaknesses, as well as asking how well they accord with previously published and new data from lunar, terrestrial, and venusian craters.
    Keywords: Geophysics
    Type: Impact Cratering: Bridging the Gap Between Modeling and Observations; 48; LPI-Contrib-1155
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Methane rainfall and runoff, along with aeolian activity, have dominated the sculpting of Titan s landscape. A knowledge of the vertical extent of bedrock erosion and the lateral extent of the resulting sediment is useful for several purposes [1]. For instance, what is the magnitude and expression of modification of constructional landforms (e.g., mountains)? Does highland denudation and the filling of basins with sediment cause adjustments (uplift and subsidence) in the crustal ice shell? Here we report preliminary findings of putative eroded craters and the results of landform evolution modeling (Fig. 1) that suggest that approx. 250 m of net bedrock erosion has at least locally taken place and approx.1 km of maximum local erosion.
    Keywords: Geophysics
    Type: ARC-E-DAA-TN7507 , Lunar and Planetary Science Conference (LPSC) 2013; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: We are preparing a new global geo-logic map of Jupiter s volcanic moon, Io. Here we report the type of data that are now available from our global mapping efforts, and how these data can be used to investigate questions regarding the volcano-tectonic evolution of Io. We are using the new map to investigate several specific questions about the geologic evolution of Io that previously could not be well addressed, including (for example) a comparison of the areas vs. the heights of Ionian mountains to assess their stability and evolution (Fig. 1). The area-height relationships of Io s visible mountains show the low abundance and low relief of volcanic mountains (tholi) relative to tectonic mountains, consistent with formation from low-viscosity lavas less likely to build steep edifices. Mottled mountains are generally less high than lineated mountains, consistent with a degradational formation.
    Keywords: Geophysics
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009; 47-48; NASA/CP-2010-216680
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Io has very high surface heat flow and an abundance of volcanic activity, which are thought to be driven by nonuniform tidal heating in its interior. This nonuniform heat is transported to the base of the lithosphere by very vigorous convection in Io's silicate mantle, the form of which is presumably responsible for the distribution of surface features such as volcanoes and mountains. We here present three-dimensional spherical calculations of mantle convection in Io, in order to ascertain the likely form of this convection and the resulting distribution of heat flow at the surface and core-mantle boundary. Different models of tidal dissipation are considered: the endmember scenarios (identified by M. N. Ross and G. Schubert) of dissipation in the entire mantle, or dissipation in a thin (approximately 100-km-thick) asthenosphere, as well as the 'preferred' distribution of M. N. Ross et al. comprising 1/3 mantle and 2/3 asthenosphere heating. The thermal structure of Io's mantle and asthenosphere is found to be strongly dependent on tidal heating mode, as well as whether the mantle-asthenosphere boundary is permeable or impermeable. Results indicate a large-scale flow pattern dominated by the distribution of tidal heating, with superimposed small-scale asthenospheric instabilities that become more pronounced with increasing Rayleigh number. These small-scale instabilities spread out the surface heat flux, resulting in smaller heat flux variations with increasing Rayleigh number. Scaled to Io's Rayleigh number of O(10(exp 12)) variations of order a few percent are expected. This small but significant variation in surface heat flux may be compatible with the observed distributions of volcanic centers and mountains, which appear fairly uniform at first sight but display a discernible distribution when suitably processed. The observed distribution of volcanic centers is similar to the asthenosphere heating distribution, implying that most of the tidal heating in Io occurs in an asthenosphere.
    Keywords: Geophysics
    Type: Icarus (ISSN 0019-1035); 149; 79-93
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: Stereo-derived topographic mapping of 50% of Enceladus reveals at least 6 large-scale, ovoid depressions (basins) 90-175 km across and 800-to-1500 m deep and uncorrelated with geologic boundaries. Their shape and scale are inconsistent with impact, geoid deflection, or with dynamically supported topography. Isostatic thinning of Enceladus ice shell associated with upwellings (and tidally-driven ice melting) can plausibly account for the basins. Thinning implies upwarping of the base of the shell of 10-20 km beneath the depressions, depending on total shell thickness; loss of near-surface porosity due to enhanced heat flow may also contribute to basin lows. Alternatively, the basins may overly cold, inactive, and hence denser ice, but thermal isostasy alone requires thermal expansion more consistent with clathrate hydrate than water ice. In contrast to the basins, the south polar depression (SPD) is larger (~350 wide) and shallower (~0.4-to-0.8 km deep) and correlates with the area of tectonic deformation and active resurfacing. The SPD also differs in that the floor is relatively flat (i.e., conforms roughly to the global triaxial shape, or geoid) with broad, gently sloping flanks. The relative flatness across the SPD suggests that it is in or near isostatic equilibrium, and underlain by denser material, supporting the polar sea hypothesis of Collins and Goodman. Near flatness is also predicted by a crustal spreading origin for the "tiger stripes (McKinnon and Barr 2007, Barr 2008); the extraordinary, high CIRS heat flows imply half-spreading rates in excess of 10 cm/yr, a very young surface age (~250,000 yr), and a rather thin lithosphere (hence modest thermal topography). Topographic rises in places along the outer margin of the SPD correlate with parallel ridges and deformation along the edge of the resurfaced terrain, consistent with a compressional, imbricate thrust origin for these ridges, driven by the spreading.
    Keywords: Geophysics
    Type: Geophysical Research Letters; 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Cam et al., 1998; Greenberg et al., 19991, or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 20001. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness 〉15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.
    Keywords: Geophysics
    Type: Paper2004GL019978 , Geophysical Research Letters (ISSN 0094-8276); 31; 16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Europa, a Moon-sized, ice-covered satellite of Jupiter, is second only to Mars in its astrobiological potential. Beneath the icy surface, an ocean up to 150 km deep is thought to exist, providing a potential habitat for life,and a tempting target for future space missions. The Galileo mission to the Jovian system recently ended, but there are already long-range plans to send much more capable spacecraft,such as the proposed Jupiter Icy Moons Orbiter (JIMO), to take a closer look at Europa and her siblings, Ganymede and Callisto, some time in the next two decades. Europak outer icy shell is the only interface between this putative ocean and the surface, but many aspects of this shell are presently poorly understood; in particular, its composition, thickness, deformational history, and mechanical properties. To discuss the ice shell and our current understanding of it, 78 scientists from the terrestrial and planetary science communities in the United States and Europe gathered for a 3-day workshop hosted by the Lunar and Planetary Institute in Houston in February. A key goal was to bring researchers from disparate disciplines together to discuss the importance and limitations of available data on Europa with a post-Galileo perspective. The workshop featured 2 days of reviews and contributed talks on the composition, physical properties, stratigraphy, tectonics, and future exploration of the ice shell and underlying ocean. The final morning included an extended discussion period, moderated by a panel of noted experts, highlighting outstanding questions and areas requiring future research.
    Keywords: Geophysics
    Type: EOS, Transactions (ISSN 0096-3941); 85; 33; 311-312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...