ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Data assimilation of Aerosol Robotic Network (AERONET) and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness (AOT) for aerosol forecasting was tested within the Navy Aerosol Analysis Prediction System (NAAPS) framework, using variational and ensemble data assimilation methods. Navy aerosol forecasting currently makes use of a deterministic NAAPS simulation coupled to Navy Variational Data Assimilation System for aerosol optical depth, a two-dimensional variational data assimilation system, for MODIS AOT assimilation. An ensemble version of NAAPS (ENAAPS) coupled to an ensemble adjustment Kalman filter (EAKF) from the Data Assimilation Research Testbed was recently developed, allowing for a range of data assimilation and forecasting experiments to be run with deterministic NAAPS and ENAAPS. The main findings are that the EAKF, with its flow-dependent error covariances, makes better use of sparse observations such as AERONET AOT. Assimilating individual AERONET observations in the two-dimensional variational system can increase the analysis errors when observations are located in high AOT gradient regions. By including AERONET with MODIS AOT assimilation, the magnitudes of peak aerosol events (AOT〉 1) were better captured with improved temporal variability, especially in India and Asia where aerosol prediction is a challenge. Assimilating AERONET AOT with MODIS had little impact on the 24 h forecast skill compared to MODIS assimilation only, but differences were found downwind of AERONET sites. The 24 h forecast skill was approximately the same for forecasts initialized with analyses from AERONET AOT assimilation alone compared to MODIS assimilation, particularly in regions where the AERONET network is dense; including the United States and Europe, indicating that AERONET could serve as a backup observation network for over-land synoptic-scale aerosol events.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN46009 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 9; 4967-4992
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-24
    Description: Igneous graphite. a rare constituent in terrestrial mafic and ultramafic rocks. occurs in three EH and one EL enstatite chondrite impact-melt breccias as 2-150 Ilm long euhedrallaths. some with pyramidal terminations. In contrast. graphite in most enstatite chondrites exsolved from metallic Fe-Ni as polygonal. rounded or irregular aggregates. Literature data for five EH chondrites on C combusting at high temperatures show that Abee contains the most homogeneous C isotopes (i.e. delta(sup 13)C = -8.1+/-2.1%); in addition. Abee's mean delta(sup l3)C value is the same as the average high-temperature C value for the set of five EH chondrites. This suggests that Abee scavenged C from a plurality of sources on its parent body and homogenized the C during a large-scale melting event. Whereas igneous graphite in terrestrial rocks typically forms at relatively high pressure and only moderately low oxygen fugacity (e.g., approx. 5 kbar. logfO2, approx. -10 at 1200 C ). igneous graphite in asteroidal meteorites formed at much lower pressures and oxygen fugacities.
    Keywords: Geophysics
    Type: Mineralogical Magazine; 61; 699-703
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: Twenty minerals that were not included in the most recent list of meteoritic minerals have been reported as occurring in meteorites. Extraterrestrial anhydrous Ca phosphate should be called menillite, not whitlockite.
    Keywords: Geophysics
    Type: Meteoritics and Planetary Science; 32; 5; 733-734
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Our examination of nine CM chondrites that span the aqueous alteration sequence leads us to conclude that compact dark fine mantles surrounding chondrules and inclusions in CM chondrites are not discrete fine-grained rims acquired in the solar nebula as modeled by Metzler et al. [Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 1992, 2873-28971. Nebular processes that lead to agglomeration produce materials with porosities far higher than those in the dark mantles. We infer that the mantles were produced from porous nebular materials on the CM parent asteroid by impact-compaction (a process that produces the lowest porosity adjacent to chondrules and inclusions). Compaction was followed by aqueous alteration that formed tochilinite, serpentine, Ni-bearing sulfide, and other secondary products in voids in the interchondrule regions. Metzler et al. reported a correlation between mantle thickness and the radius of the enclosed object. In Yamato 791 198 we find no correlation when all sizes of central objects and dark lumps are included but a significant correlation (r(sup 2) = 0.44) if we limit consideration to central objects with radii 〉35 microns; a moderate correlation is also found in QUE 97990. We suggest that impact-induced shear of a plum-pudding-like precursor produced the observed "mantles"; these were shielded from comminution during impact events by the adjacent stronger chondrules and inclusions. Some mantles in CM chondrites with low degrees of alteration show distinct layers that may largely reflect differences in porosity. Typically, a gray, uniform inner layer is surrounded by an outer layer consisting of darker silicates with BSE-bright speckles. The CM-chondrite objects characterized as "primary accretionary rocks" by Metzler et al. did not form in the nebula, but rather on the parent body. The absence of solar-flare particle tracks and solar-wind-implanted rare gases in these clasts reflect their lithified nature and low surface/volume ratios during the period when they resided in the regolith and were subject to irradiation by solar particles. The clasts are analogous to the light-colored metamorphosed clasts in ordinary-chondrite regolith breccias (which also lack solar-flare particle tracks and solar-wind gas).
    Keywords: Geophysics
    Type: Geochimica et Cosmochimica Acta; 70; 1271-1290
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The thermal and shock histories of ureilites can be divided into four periods: 1) formation, 2) initial shock, 3) post-shock annealing, and 4) post-annealing shock. Period 1 occurred approx.4.55 Ga ago when ureilites formed by melting chondritic material. Impact events during period 2 caused silicate darkening, undulose to mosaic extinction in olivines, and the formation of diamond, lonsdaleite, and chaoite from indigenous carbonaceous material. Alkali-rich fine-grained silicates may have been introduced by impact injection into ureilites during this period. About 57% of the ureilites were unchanged after period 2. During period 3 events, impact-induced annealing caused previously mosaicized olivine grains to become aggregates of small unstrained crystals. Some ureilites experienced reduction as FeO at the edges of olivine grains reacted with C from the matrix. Annealing may also be responsible for coarsening of graphite in a few ureilites, forming euhedral-appearing, idioblastic crystals. Orthopyroxene in Meteorite Hills (MET) 78008 may have formed from pigeonite by annealing during this period. The Rb-Sr internal isochron age of approx.4.0 Ga for MET 78008 probably dates the annealing event. At this late date, impacts are the only viable heat source. About 36% of ureilites experienced period 3 events, but remained unchanged afterwards. During period 4, approx.7% of the ureilites were shocked again, as is evident in the polymict breccia, Elephant Moraine (EET) 83309. This rock contains annealed mosaicized olivine aggregates composed of small individual olivine crystals that exhibit undulose extinction. Ureilites may have formed by impact-melting chondritic material on a primitive body with heterogeneous O isotopes. Plagioclase was preferentially lost from the system due to its low impedance to shock compression. Brief melting and rapid burial minimized the escape of planetary-type noble gases from the ureilitic melts. Incomplete separation of metal from silicates during impact melting left ureilites with relatively high concentrations of trace siderophile elements.
    Keywords: Geophysics
    Type: Meteoritics and Planetary Science; 41; 1; 125-133
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Chondrule D8n in LL3.0 Semarkona is a porphyritic olivine (PO) chondrule, 1300 x 1900 microns in size, with a complicated thermal history. The oldest recognizable portion of D8n is a moderately high-FeO, PO chondrule that is modeled as having become enmeshed in a dust ball containing a small, intact, low-FeO porphyritic chondrule and fine-grained material consisting of forsterite, kamacite, troilite, and possibly reduced C. The final chondrule melting event may have been a heat pulse that preferentially melted the low-FeO material and produced a low-FeO, opaque-rich, exterior region, 45-140 microns in thickness, around the original chondrule. Ai one end of the exterior region, a kamacite- and troilite-rich lump 960 pm in length formed. During the final melting event, the coarse, moderately ferroan olivine phenocrysts within the original chondrule appear to have been partly resorbed (These relict phenocrysts have the highest concentrations of FeO, MnO, and Cr2O3-7.5, 0.20, and 0.61 wt%, respectively-in D8n.). Narrow olivine overgrowths crystallized around the phenocrysts following final chondrule melting; their compositions seem to reflect mixing between melt derived from the exterior region and the resorbed margins of the phenocrysts. During the melting event, FeO in the relict phenocrysts was reduced, producing numerous small blebs of Ni-poor metallic Fe along preexisting curvilinear fractures. The reduced olivine flanking the trails of metal blebs has lower FeO than the phenocrysts but virtually identical MnO and Cr2O3 contents. Subsequent parent-body aqueous alteration in the exterior region of the chondrule formed pentlandite and abundant magnetite.
    Keywords: Geophysics
    Type: Meteoritics and Planetaty Science; 41; 7; 1027-1038
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The properties of ordinary chondrites (OC) reflect both nebular and asteroidal processes. OC are modeled here as having acquired nebular water, probably contained within phyllosilicates, during agglomeration. This component had high Ai70 and acted like an oxidizing agent during thermal metamorphism. The nebular origin of this component is consistent with negative correlations in H, L, and LL chondrites between oxidation state (represented by olivine Fa) and bulk concentration ratios of elements involved in the metal-silicate fractionation (e.g., NdSi, Ir/Si, Ir/Mn, Ir/Cr, Ir/Mg, Ni/Mg, As/Mg, Ga/Mg). LL chondrites acquired the greatest abundance of phyllosilicates with high (delta)O-17 among OC (and thus became the most oxidized group and the one with the heaviest O isotopes); H chondrites acquired the lowest abundance, becoming the most reduced OC group with the lightest O isotopes. Chondrule precursors may have grown larger and more ferroan with time in each OC agglomeration zone. Nebular turbulence may have controlled the sizes of chondrule precursors. H-chondrite chondrules (which are the smallest among OC) formed from the smallest precursors. In each OC region, low-FeO chondrules formed before high-FeO chondrules during repeated episodes of chondrule formation. During thermal metamorphism, phyllosilicates were dehydrated; the liberated water oxidized metallic Fe-Ni. This caused correlated changes with petrologic type including decreases in the modal abundance of metal, increases in olivine Fa and low-Ca pyroxene Fs, increases in the olivine/pyroxene ratio, and increases in the kamacite Co and Ni contents. As water (with its heavy 0 isotopes) was lost during metamorphism, inverse correlations between bulk (delta)O-18 and bulk (delta)O-17 with petrologic type were produced. The H5 chondrites that were ejected from their parent body approx.7.5 Ma ago during a major impact event probably had been within a few kilometers of each other since they accreted approx.4.5 Ga ago. There are significant differences in the olivine compositional distributions among these rocks; these reflect stochastic nebular sampling of the oxidant (Le., phyllosilicates with high (delta)O-17) on a 0.1-1 km scale during agglomeration.
    Keywords: Geophysics
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-7037); 69; 20; 4907-4918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: We present a new weathering index (wi) for the metallic-Fe-Ni-poor chondrite groups (CK and R) based mainly on transmitted light observations of the modal abundance of crystalline material that is stained brown in thin sections: wi-0, 〈5 vol%; wi-1, 5-25 vol%; wi-2,25-50 vol%; wi-3,50- 75 vol%; wi-4, 75-95 vol%; wi-5, 〉95 vol%, wi-6, significant replacement of mafic silicates by phyllosilicates. Brown staining reflects mobilization of oxidized iron derived mainly from terrestrial weathering of Ni-bearing sulfide. With increasing degrees of terrestrial weathering of CK and R chondrites, the sulfide modal abundance decreases, and S, Se, and Ni become increasingly depleted. In addition, bulk Cl increases in Antarctic CK chondrites, probably due to contamination from airborne sea mist.
    Keywords: Geophysics
    Type: Meteoritics and Planetary Science; 40; 8; 1123-1130
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: CK chondrites constitute the most oxidized anhydrous carbonaceous chondrite group; most of the Fe occurs in magnetite and in FeO-rich mafic silicates. The two observed CK falls (Karoonda and Kobe), along with thirteen relatively unweathered CK finds, have unfractionated siderophile-element abundance patterns. In contrast, a sizable fraction of CK finds (9 of 24 investigated) shows fractionated siderophile abundance patterns including low abundances of Ni, Co, Se and Au; the most extreme depletions are in Ni (0.24 of normal CK) and Au (0.14 of normal CK). This depletion pattern has not been found in other chondrite groups. Out of the 74 CK chondrites listed in the Meteoritical Bulletin Database (2006; excluded considerably paired specimens; see http://tin.er.usgs.gov/meteor/ metbull.php) we analyzed 24 and subclassified the CK chondrites in terms of their chemical composition and sulfide mineralogy: sL (siderophiles low; six samples) for large depletions in Ni, Co, Se and Au (〉50% of sulfides lost); sM (siderophiles medium; two CKs) for moderately low Ni and Co abundances (sulfides are highly altered or partly lost); sH (siderophiles high; one specimen) for enrichments in Ni, Co, Se and Au; 'normal' for unfractionated samples (13 samples). The sole sH sample may have obtained additional sulfide from impact redistribution in the parent asteroid. We infer that these elements became incorporated into sulfides after asteroidal aqueous processes oxidized nebular metal; thermal metamorphism probably also played a role in their mineral siting. The siderophile losses in the SL and sM samples are mainly the result of oxidation of pentlandite, pyrite and violarite by terrestrial alteration followed by leaching of the resulting phases. Some Antarctic CK chondrites have lost most of their sulfides but retained Ni, Co, Se and Au, presumably as insoluble weathering products.
    Keywords: Geophysics
    Type: Geochimica et Cosmochimica Acta; 70; 4019-4037
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Type II porphyritic chondrules commonly contain several large (〉40 microns) olivine phenocrysts; furnace-based cooling rates based on the assumption that these phenocrysts grew in a single-stage melting-cooling event yield chondrule cooling-rate estimates of 0.01-1 K/s. Because other evidence indicates much higher cooling rates, we examined type 11 chondrules in the CO3.0 chondrites that have experienced only minimal parent-body alteration. We discovered three kinds of evidence indicating that only minor (4-10 microns) olivine growth occurred after the final melting event: (1) Nearly all (〉90%) type II chondrules in CO3.0 chondrites contain low-FeO relict grains; overgrowths on these relicts are narrow, in the range of 2-12 microns. (2) Most type II chondrules contain some FeO-rich olivine grains with decurved surfaces and acute angles between faces indicating that the grains are fragments from an earlier generation of chondrules; the limited overgrowth thicknesses following the last melting event are too thin to disguise the shard-like nature of these grains. (3) Most type II chondrules contain many small (〈20 microns) euhedral or subhedral phenocrysts with central compositions that are much more ferroan than the centers of the large phenocrysts; their small sizes document the small amount of growth that occurred after the final melting event. If overgrowth thicknesses were small (4-10 microns) after the final melting event, it follows that large fractions of coarse (〉40 microns) high-FeO phenocrysts are relicts from earlier generations of chondrules, and that cooling rates after the last melting event were much more rapid than indicated by models based on a single melting event. These observations are thus inconsistent with the "classic" igneous model of formation of type II porphyritic chondrules by near-total melting of a precursor mix followed by olivine nucleation on a very limited number of nuclei (say, 〈10) and by growth to produce the large phenocrysts during a period of monotonic (and roughly linear) cooling. Our observations that recycled chondrule materials constitute a large component of the phenocrysts of type II chondrules also imply that this kind of chondrule formed relatively late during the chondrule-forming period.
    Keywords: Geophysics
    Type: Geochimica et Cosmochima Acta (ISSN 0016-7037); 67; 1; 2239-2250
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...