ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The lunar maria were formed by effusive fissure flows of low-viscosity basalt. Regional pyroclastic deposits were formed by deep-sourced fire-fountain eruptions dominated by basaltic glass. Basaltic material is also erupted from small vents within floor-fractured impact craters. These craters are characterized by shallow, flat floors cut by radial, concentric and/or polygonal fractures. Schultz [1] identified and classified over 200 examples. Low albedo pyroclastic deposits originate from depressions along the fractures in many of these craters.
    Keywords: Geophysics
    Type: JSC-CN-27805 , Lunar and Planetary Science Institute Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: As NASA s Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit relatively strong mafic absorption features, suggesting either a concentration of mafic materials or that materials exposed have been less affected by space weathering products. These combined initial observations indicate some space weathering processes are active in this part of the main asteroid belt, but are highly variable across the surface of Vesta. Such processes include: impacts from wandering asteroidal debris and local mixing at both micro- and macro-scales, irradiation by solar wind and galactic particles, production and distribution of impact breccias or melt products, and local movement of materials to gravity lows (gradual as well as sudden).
    Keywords: Geophysics
    Type: JSC-CN-25370 , Fall 2011 Meeting ofthe American Geophysical Unior; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: 4 Vesta is the largest asteroid with a basaltic surface, the only surviving differentiated asteroid recording igneous processes from the earliest phase of solar system history. The Dawn spacecraft is in orbit about Vesta pursuing a campaign of high resolution imaging and visible and infrared spectrometry of the surface; compositional mapping by gamma-ray and neutron spectrometry will follow. Vesta is heavily cratered with a surface covered by impact debris, a regolith. One important goal of the Dawn mission is to develop an understanding of regolith processes that are affecting this surface debris. Regolith characteristics are a record of interaction with the environment (e.g., impactors, dust, solar wind, galactic cosmic-rays) and give evidence of surface processes (down-gravity movement, etc.). Regolith mineralogy and composition reflect the local bedrock, with influences from regional and global mixing. Understanding regolith processes will aid in determining the lithology of underlying crust. Vesta is most likely the parent asteroid of the howardite, eucrite and diogenite meteorites. Eucrites are intrusive and extrusive mafic rocks composed mostly of ferroan low-Ca clinopyroxene and calcic plagioclase, while diogenites are cumulate magnesian orthopyroxenites. Magmatism occurred within a few million years of the formation of the solar system and then ceased. Impacts into the igneous crust produced the howardites - polymict breccias composed of mineral and lithic debris derived mostly from eucrites and diogenites. Some howardites are true regolith breccias formed by lithification of extensively impact-gardened surface debris. However, howardites have a number of significant petrologic and compositional differences from mature lunar regolith breccias and soils reflecting the different environment around Vesta compared to that at 1 AU. The most significant differences are the higher impactor flux with a lower mean impact velocity and the lower gravity. As a result, regolith processes on Vesta differ in detail from those on the Moon. Laboratory study of howardites and orbital investigation of Vesta will allow for development of robust models of regolith formation on hand sample to multi-kilometer scales.
    Keywords: Geophysics
    Type: Paper 193820 , JSC-CN-24706 , 2011 GSA (Geological Society of America) Annual Meeting; Sep 09, 2011 - Sep 12, 2011; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: The power of mineralogical analysis as a descriptive or predictive technique stems from the fact that only a few thousand minerals are known to occur in nature as compared to several hundred thousand inorganic compounds. Further, all of the known minerals have specific stability ranges in pressure, temperature, an composition. A specific knowledge of the mineralogy of a planets surface or interior therefore allows one to characterize the present or past conditions under which the minerals were formed or have existed. For the purposes of this paper, a slightly broader definition of mineralogy was adopted by including not only crystalline materials found on planetary surfaces, but also ices and classes that can benefit from in situ types of analyses. Both visual examination and the various spectroscopies available for robotic probes to planetary surfaces are discussed.
    Keywords: Geophysics
    Type: Planetary Surface Instruments Workshop; 65-83; NASA-CR-202215
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: With reflectance spectroscopy, one is measuring only properties of the fine-grained regolith, most affected by space weathering. The Lunar Soil Characterization Consortium has undertaken the task of coordinated characterization of lunar soils, with respect to their mineralogical and chemical makeup. It is these lunar soils that are being used as "ground-truth" for all air30 less bodies. Modal abundances and chemistries of minerals and glasses in the finest size fractions (20-45, 10-20, and 〈10 microns) of four Apollo 14 and six Apollo 16 highland soils have been determined, as well as their bulk chemistry and IS/FeO values. Bi-directional reflectance measurements (0.3-2.6 microns) of all samples were performed in the RELAB. A significant fraction of nanophase Fe(sup 0) (np-Fe(sup 0)) appears to reside in agglutinitic glasses. However, as grain size of a soil decreases, the percentage of total iron present as np-Fe0 increases significantly, whereas the agglutinitic glass content rises only slightly; this is evidence for a large contribution to the IS/FeO values from the surface-correlated nanophase Fe(sup 0), particularly in the 〈10 micron size fraction. The compositions of the agglutinitic glasses in these fine fractions of the highland soils are different from the bulk-chemistry of that size; however, compositional trends of the glasses are not the same as those observed for mare soils. It is apparent that the glasses in the highland soils contain chemical components from outside their terrains. It is proposed that the Apollo 16 soils have been adulterated by the addition of impact-transported soil components from surrounding maria.
    Keywords: Geophysics
    Type: JSC-CN-19244
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...