ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (2)
  • 1
    Publication Date: 2019-07-10
    Description: The variability of the horizontal circulation in the stratosphere and troposphere of the Northern Hemisphere (NH) is compared by using various approaches. Spatial degrees of freedom (dof) on different time scales were derived. Modes of variability were computed in geopotential height fields at the tropospheric and stratospheric pressure levels by applying multivariate statistical approaches. Features of the spatial and temporal variability of the winterly zonal wind were studied with the help of recurrence and persistence analyses. The geopotential height and zonally-averaged zonal wind at the 50-, 500- and 1000-hPa level are used to investigate the behavior of the horizontal circulation in the lower stratosphere, mid-troposphere and at the near surface level, respectively. It is illustrated that the features of the variability of the horizontal circulation are very similar in the mid-troposphere and at the near surface level. Due to the filtering of tropospheric disturbances by the stratospheric and upper tropospheric zonal mean flow, the variability of the stratospheric circulation exhibits less spatial complexity than the circulation at tropospheric pressure levels. There exist enormous differences in the number of degrees of freedom (or free variability modes) between both atmospheric layers. Results of the analyses clearly show that the concept of a zonally symmetric AO with a simple structure in the troposphere similar to the one in the stratosphere is not valid. It is concluded that the spatially filtered climate change signal can be detected earlier in the stratosphere than in the mid-troposphere or at the near surface level.
    Keywords: Geophysics
    Type: GCN-01-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: The relationship between Northern Hemisphere (NH) tropospheric and stratospheric wave-like anomalies of spherical zonal wave number (ZWN) 1 is studied by applying Canonical Correlation Analysis (CCA). A lag-correlation technique is used with 10-day lowpass filtered daily time series of 50- and 500-hPa geopotential heights. Generally stratospheric circulation is determined by ultralong tropospheric planetary waves. During winter seasons characterized either by any anomalously strong or weak polar winter vortex different propagation characteristics for waves of ZWN 1 are observed. The non-linear perspective of the results have implications for medium range weather forecast and climate sensitivity experiments.
    Keywords: Geophysics
    Type: GCN-01-05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...