ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.
    Keywords: Geophysics
    Type: Western Pacific Geophysics Meeting (WPGM) Object: 2134; Jun 22, 2010 - Jun 25, 2010; Taipei; Taiwan, Province of China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: We report global ion kinetic (GIK) simulations of the 24-25 Sep 1988 storm, with all relevant ionospheric outflows including polar, auroral, and plasmaspheric winds. This storm included substantial periods of northward interplanetary magnetic field, but did develop a Dst of -200nT at its peak. The solar disturbance resulted from a coronal mass ejection that reached a peak dynamic pressure at the magnetosphere of 6.2 nPa, and produced a substantial enhancement of auroral wind oxygen outflow from the dayside, which has been termed an "ionospheric mass ejection" in an earlier paper. We use the LFM global simulation model to produce electric and magnetic fields in the outer magnetosphere, the Strangeway-Zheng outflow scalings with Delcourt ion trajectories to include ionospheric outflows, and the Fok-Obner inner magnetospheric model for the plasmaspheric and ring current response to all particle populations. We assess the combined contributions of heliospheric and geospheric plasmas to the ring current for this event.
    Keywords: Geophysics
    Type: American Geophysical Union Conference; Dec 15, 2008 - Dec 19, 2008; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The superstorm on 20.21 November 2003 was the largest geomagnetic storm in solar cycle 23 as measured by Dst, which attained a minimum value of .422 nT. We have simulated this storm to understand how particles originating from the solar wind and ionosphere get access to the magnetosphere and how the subsequent transport and energization processes contribute to the buildup of the ring current. The global electromagnetic configuration and the solar wind H+ distribution are specified by the Lyon-Fedder-Mobarry (LFM) magnetohydrodynamics model. The outflow of H+ and O+ ions from the ionosphere are also considered. Their trajectories in the magnetosphere are followed by a test-particle code. The particle distributions at the inner plasma sheet established by the LFM model and test-particle calculations are then used as boundary conditions for a ring current model. Our simulations reproduce the rapid decrease of Dst during the storm main phase and the fast initial phase of recovery. Shielding in the inner magnetosphere is established at early main phase. This shielding field lasts several hours and then breaks down at late main phase. At the peak of the storm, strong penetration of ions earthward to L shell of 1.5 is revealed in the simulation. It is surprising that O+ is significant but not the dominant species in the ring current in our calculation for this major storm. It is very likely that substorm effects are not well represented in the models and O+ energization is underestimated. Ring current simulation with O+ energy density at the boundary set comparable to Geotail observations produces excellent agreement with the observed symH. As expected in superstorms, ring current O+ is the dominant species over H+ during the main to mid-recovery phase of the storm.
    Keywords: Geophysics
    Type: Journal of Geophysical Research (ISSN 0148-0227); 116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Simulations were conducted to investigate the influence of rapid electric field fluctuations on electron energization in the inner magnetosphere based on the assimilative mapping of ionospheric electrodynamics (AMIE) technique. Simulations for four different magnetic storms were run, namely those that occurred on May 15, 1997, May 4, 1998, September 25, 1998, and October 19, 1998. Here, we have examined the formation of high energy (10-1000 keV) electrons in the inner magnetosphere during these storm events with our recently-developed relativistic radiation belt transport code. The point of this numerical experiment is to show that a simulation of a real event must have the high time resolution electric field input files in order to produce the seed population for the radiation belts, which are often observed to increase in the days following a magnetic storm. Specifically, a cadence of the global electric field pattern of 5 minutes or less produces inner magnetospheric fluxes that are larger (by up to several orders of magnitude) than fluxes produced with a longer cadence. Differences were particularly large relative to simulation results with a 3-hour time cadence, analogous to a Kp-driven electric field model.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Simulations were conducted to investigate the influence of rapid electric field fluctuations on electron energization in the inner magnetosphere based on the assimilative mapping of ionospheric electrodynamics (AMIE) technique. Simulations for four different magnetic storms were run, namely those that occurred on May 15,1997, May 4, 1998, September 25, 1998, and October 19, 1998. Here, we have examined the formation of high energy electrons in the inner magnetosphere during these storm events with our recently-developed relativistic radiation belt transport code. The point of this numerical experiment is to show that a simulation of a real event must have the high time resolution electric field input files in order to produce the seed population for the radiation belts, which are often observed to increase in the days following a magnetic storm. Specifically, a cadence of the global electric field pattern of 5 minutes or less produces inner magnetospheric fluxes that are larger (by up to 5 orders of magnitude) than fluxes produced with a longer cadence. Differences were particularly large relative to simulation results with a 3-hour time cadence, analogous to a Kp-driven electric field model.
    Keywords: Geophysics
    Type: 2003 Fall American Geophysical Union Meeting; Dec 08, 2003 - Dec 12, 2003; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: We investigate the global structure and dynamics of plasma circulation produced by prototypical solar wind disturbances of the interplanetary magnetic field and dynamic pressure. We track the global circulation and energization of solar wind, polar wind, and auroral wind plasmas throughout the magnetosphere, until they precipitate or escape into the downstream solar wind. We use the full equations of motion of the plasma ions within fields produced by a global MHD simulation of the dynamic solar wind interaction. We use the dynamic hot plasma density and Poynting energy flux specified at the inner boundary of the MHD simulation as drivers of conjugate ion outflow fluxes using local empirical relations obtained from the FAST and Polar missions. Birkeland currents computed by the MHD code are used to derive a field-parallel potential drop from a Knight-like relation [as modified by Lyons and Evans, 1980]. This potential drop is applied to each ion as an initial bulk energy, added to a thermal heating driven by the locally incident Poynting flux. The solar wind pressure increase case (B(sub Y) = 5; B(sub z) = 0 nT) produces an immediate substorm owing to compression of pre-existing plasmas. The SB(sub z), interval (embedded in NB(sub z)) produces a substorm after about one hour of development. Both disturbances enhance the auroral wind flux and heavy ion pressure of the magnetosphere substantially, with complex dynamic structuring by auroral acceleration vortexes and dynamic reconnection. Comparisons are made with observations during disturbed periods including the Halloween 2003 super-storm and other periods.
    Keywords: Geophysics
    Type: 2006 Earth-Sun Exploration; Jan 17, 2006 - Jan 20, 2006; Kona, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Moon-based Extreme Ultraviolet Camera (EUVC) aboard China's Chang'e-3 (CE-3) mission has successfully imaged the entire Earth's plasmasphere for the first time from the side views on lunar surface. An EUVC image on 21 April 2014 is used in this study to demonstrate the characteristics and configurations of the Moon-based EUV imaging and to illustrate the determination algorithm of the plasmapause locations on the magnetic equator. The plasmapause locations determined from all the available EUVC images with the Minimum L Algorithm are quantitatively compared with those extracted from insitu observations (Defense Meteorological Satellite Program, Time History of Events and Macroscale Interactions during Substorms, and Radiation Belt Storm Probes). Excellent agreement between the determined plasmapauses seen by EUVC and the extracted ones from other satellites indicates the reliability of the Moon-based EUVC images as well as the determination algorithm. This preliminary study provides an important basis for future investigation of the dynamics of the plasmasphere with the Moon-based EUVC imaging.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN41241 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 121; 1; 296-304
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.
    Keywords: Geophysics
    Type: GSFC.ABS.01112.2012 , 2012 Japan Geoscience Union Meeting; May 20, 2012 - May 25, 2012; Chiba City; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.
    Keywords: Geophysics
    Type: GSFC.ABS.4937.2011 , Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere; Aug 16, 2011 - Aug 17, 2011; Seoul; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: During geomagnetic quiet times, in-situ measurements of ring current energetic ions (few to few tens of keVs) from THEMIS spacecraft often exhibit multiple ion populations at discrete energies that extend from the inner magnetosphere to the magnetopause at dayside or plasma sheet at nightside. During geomagnetic storm times, the levels of fluxes as well as the mean energies of these ions elevated dramatically and the more smooth distributions in energies and distances during quiet times are disrupted into clusters of ion populations with more confined spatial extends. This reveals local plasma heating processes that might have come into play. Several processes have been proposed. Magnetotail dipolarization, sudden enhancement of field-aligned current, local current disruptions, and plasma waves are possible mechanisms to heat the ions locally as well as strong convections of energetic ions directly from the magnetotail due to reconnections. We will examine two geomagnetic storms on October 11, 2008 and July 22, 2009 to reveal possible heating mechanisms. We will analyze in-situ plasma and magnetic field measurements from THEMIS, GOES, and DMSP for the events to study the ion pitch angle distributions and magnetic field perturbations in the auroral ionosphere and inner magnetosphere where the plasma heating processes occur.
    Keywords: Geophysics
    Type: GSFC.ABS.4562.2011 , 2010 Western Pacific Geophysics Meeting; Jun 22, 2010 - Jun 25, 2010; Taipei; Taiwan, Province of China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...