ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Description: Over the past few years, there has been a considerable revival in the study of geomagnetic storms stimulated by an increasing knowledge of the energetic particles which comprise the ring current. It is only in recent years that the composition of the ring current has been thouroughly explored and the important role of the oxygen component of the near Earth plasma sheet has become recognized.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Current sheets are ubiquitous in nature. occurring in such varied locations as the solar atmosphere. the heliosphere, and the Earth's magnetosphere. The simplest current sheet is the one-dimensional Harris neutral sheet, with the lobe field strength and scale-height the only free parameters. Despite its simplicity, confirmation of the Harris sheet as a reasonable description of the Earth's current sheet has remained elusive. In early 2009 the orbits of the 5 THEMIS probes fortuitously aligned such that profiles of the Earth's current sheet could be modeled in a time dependent manner. For the few hours of alignment we have calculated the time history of the current sheet parameters (scale height and current) in the near-Earth region. during both quiet and active times. For one particular substorm. we further demonstrate good quantitative agreement with the diversion of cross tail current inferred from the Harris modeling with the ionospheric current inferred from ground magnetometer data.
    Keywords: Geophysics
    Type: 10th International Conference on Substorms; Mar 22, 2010 - Mar 26, 2010; San Luis Obispo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-15
    Description: This paper presents results from global MHD simulations showing the evolution of the plasma and field in the near-Earth tail during the substorm phases. The late growth phase is characterized by pronounced thinning of the plasma sheet and stretching of the field in the region between approximately -6 R(sub E) to -30 R(sub E). A pre-existing X-line moves tailward to beyond -50 R(sub E). Close to onset, a new X-line forms near -18 R(sub E) in the midnight sector. Earthward flows emanating from this X-line dipolarize the near-Earth field, leading to a reduction of the cross-tail current in the midnight sector, but not elsewhere. The magnetic shear between the dipolarized field near midnight and the stretched field elsewhere is equivalent to currents flowing through the ionosphere in a region I sense, and so forming the current wedge. Later in the expansion phase, the dipolarization spreads in local time at a rate of about 0.3 hours MLT per minute. A strong electric field and a rapid increase of the plasma pressure is associated with the dipolarization. Near midnight the dipolarization appears to occur at all distances between 6.6 and 13 R(sub E) at the same time within the resolution (+/- 2 min) of our model. However, the model results indicate that dipolarization starts before ground onset in the pre-midnight sector and propagates both earthward and eastward.THus, dipolarization may be much more complex than simple earthward/tailward and/or azimuthal expansion.
    Keywords: Geophysics
    Type: Substorms; 4; 343-348
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-15
    Description: The onset of the majority of substorms occurs when the tail field stops growing more tail-like and begins to become more dipolar. This corresponds to the onset signatures on the ground and in geosynchronous orbit. The AE indices and the IGS Pi 2 data were used to determine the major substorm onsets of 1978 and 1979. The time delay between successive substorms, the distribution of the substorm growth phase duration and the probability of tailward flows were determined as a function of spacecraft location. About a half of the substorms exhibit a plasma signature including earthward or tailward flows or plasma sheet drop out and recovery. Earthward flows are often seen at substorm onset, and almost always during substorm recovery. Tailward flows are occasionally seen at onset as the spacecraft is close enough to the neutral sheet. The experimental results are compared to predictions based on the neutral line and current sheet disruption models.
    Keywords: Geophysics
    Type: ; 333-340
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.
    Keywords: Geophysics
    Type: Journal of Geophysical Research (ISSN 0148-0227); 110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The large scale structure of the current sheet in the terrestrial magnetotail is often represented as the superposition of a constant northward-oriented magnetic field component (B(sub z)) and a component along the Earth-Sun direction (B(sub x)) that varies with distance from the center of the sheet (z(sub o) in GSM) as in a Hams neutral sheet. The latter implies that B(sub x) = B(sub Lx) tanh((z - z(sub o))/h) where B(sub Lx) is the magnitude of the B(sub x) component in the northern lobe. Correspondingly, the cross-tail current should be approximated by J(sub y) = (B(sub Lx)/h) sech(sup 2)((z - z(sub o))/h). Using data from the fluxgate magnetometer (FGM) on the Cluster I1 spacecraft tetrad, we have used measured fields and currents to ask if this model represents the large-scale properties of the system. During very quiet crossings of the plasmasheet, we find that the model gives a reasonable estimate of the trend of the average current and field distributions, but during disturbed intervals, the best fit fails to represent the data. If, however, the parameters z(sub o) and h of the model are taken as variable functions of time, the fits can be reasonably good. The temporal variation of the fit parameter h that characterizes the thickness of the current sheet can be interpreted in terms of thinning during the growth phase of a substorm and thickening following the expansion phase. Ground signatures that give insight into the local time of substorm onset can be used to interpret the response of the plasmasheet to substorm related changes of the global system. During a substorm, the field magnitude in the central plasmasheet fluctuates at the period of Pi2 pulsations.
    Keywords: Geophysics
    Type: Advances in Space Research (ISSN 0273-1177); 36; 1818-1824
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Cluster fluxgate magnetometer (FGM) and ion spectrometer (CIS) data are employed to analyze magnetic field fluctuations within the plasma sheet during passages through the magnetotail region in the summers of 2001 and 2002 and, in particular, to look for characteristics of magnetohydrodynamic (MHD) turbulence. Power spectral indices determined from power spectral density functions are on average larger than Kolmogorov's theoretical value for fluid turbulence as well as Kraichnan's theoretical value for MHD plasma turbulence. Probability distribution functions of the magnetic fluctuations show a scaling law over a large range of temporal scales with non-Gaussian distributions at small dissipative scales and inertial scales and more Gaussian distribution at large driving scales. Furthermore, a multifractal analysis of the magnetic field components shows scaling behavior in the inertial range of the fluctuations from about 20 s to 13 min for moments through the fifth order. Both the scaling behavior of the probability distribution functions and the multifractal structure function suggest that intermittent turbulence is present within the plasma sheet. The unique multispacecraft aspect and fortuitous spacecraft spacing allow us to examine the turbulent eddy scale sizes. Dynamic autocorrelation and cross correlation analysis of the magnetic field components allow us to determine that eddy scale sizes fit within the plasma sheet. These results suggest that magnetic field turbulence is occurring within the plasma sheet resulting in turbulent energy dissipation.
    Keywords: Geophysics
    Type: Journal of Geophysical Research (ISSN 0148-0227); 110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...