ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (2)
  • 1
    Publication Date: 2019-07-19
    Description: The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric perturbations, and to distinguish ionospheric responses to processes of EQ preparation against the effects of other factors. The 2-D snapshots of the electron density over Japan showed abnormal increase over the maximum stress during the night, a few hours before the main shock. Our results from recording atmospheric and ionospheric conditions during the earthquake indicate the presence of anomalies in the atmosphere and ionospheres occurring consistently over regions of maximum stress near the epicenter. Due to their long duration (hours and days) and spatial appearance (only over the Sendai region) these results do not appear to be caused by meteorological or magnetic activity. They reveal the existence of atmospheric and ionospheric phenomena occurring prior to the earthquake, which indicates new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004).
    Keywords: Geophysics
    Type: GSFC.ABS.6851.2012 , EMSEV (Electromagnetic Study of Earthquakes and Volcanoes) Meeting 2012; Oct 01, 2012 - Oct 03, 2012; Gotemba, Shizuoka; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events
    Keywords: Geophysics
    Type: GSFC.ABS.5970.2012 , Geophysical Research Abstracts; 14|European Geophysical Union (EGU) General Assembly 2012; Apr 22, 2012 - Apr 27, 2012; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...