ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Two data products from the Total Ozone Mapping Spectrometer (TOMS) onboard Nimbus-7 have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the instrument sensitivity are monitored by a spectral discrimination technique using measurements of the intrinsically stable wavelength dependence of derived surface reflectivity. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and drift is less than 1.0 percent per decade. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone amount and reflectivity in a I - degree latitude by 1.25 degrees longitude grid. The Level-3 product also is available on CD-ROM. Detailed descriptions of both HDF data files and the CD-ROM product are provided.
    Keywords: Geophysics
    Type: NASA-RP-1384 , Rept-96B00064 , NAS 1.61:1384
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Part of the NASA plans for future Earth Science missions calls for observations using novel vantage points that can produce science products otherwise unobtainable. Observations of the Earth from the Lagrange-2 point, L-2, (1.5 million km behind the Earth on the Earth-Sun line) affords a unique vantage point for atmospheric science. Spectral observation of the Earth's atmosphere using solar occultation techniques in the near infrared (1 to 4 microns) provides one of the most accurate methods of passively sensing attitude profiles of the major species (CO2, O3, O2, CH4, H2O N2O). While traditional polar orbiting occultation measurements can obtain about 14 measurements per day (2 per orbit), solar occultation observations from the Lagrange-2 point will yield hourly profile measurements at all latitudes. The expected spatial resolution is 2 km in altitude, 0.5 degrees in latitude, and 2 degrees in longitude. The result from 24 hours of observations will be a three-dimensional map of atmospheric composition. To accomplish this task from L-2 requires the development of a large moderate spectral resolution instrument whose entrance aperture is about 10 meters. Use of a standard telescope design with a 10-meter circular mirror or a 10-meter strip mirror would be prohibitively expensive and excessively massive. Instead, we are proposing the development of a 10-meter linear interferometer coupled to a Fourier transform imaging spectrometer. The result will be a highly efficient design with sufficient sensitivity, while having both spatial and spectral resolution to produce the desired results. Preliminary calculations show that seven species (CO2, O3, O2, CH4, H2O N2O) have clearly separated spectral features in the I to 4 microns range with sufficient absorption to produce profile information from near the Earth's surface to the middle stratosphere. For CO2 the estimated sensitivity to change is 0.33% or 1 part in 330. This should be sufficient to detect changes that are significant for the carbon cycle studies. Initial instrument design studies are underway to determine the optimum optical design for the interferometer-spectrometer as well as the necessary highly stable mechanical designs. Separate design studies are being conducted for the spacecraft. shuttle launch facility, low-light solar power design, thermal control, and unique navigation requirements to reach and maintain the tight halo orbit about L-2.
    Keywords: Geophysics
    Type: IGARSS 2001; Jul 01, 2001; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Zonal average ultraviolet irradiance (flux ultraviolet, F(sub uv)) reaching the Earth's surface has significantly increased since 1979 at all latitudes except the equatorial zone. Changes are estimated in zonal average F(sub uv) caused by ozone and cloud plus aerosol reflectivity using an approach based on Beer's law for monochromatic and action spectrum weighted irradiances. For four different cases, it is shown that Beer's Law leads to a power law form similar to that applied to erythemal action spectrum weighted irradiances. Zonal and annual average increases in F(sub uv) were caused by decreases in ozone amount from 1979 to 1998. After 1998, midlatitude annual average ozone amounts and UV irradiance levels have been approximately constant. In the Southern Hemisphere, zonal and annual average UV increase is partially offset by tropospheric cloud and aerosol transmission decreases (hemispherical dimming), and to a lesser extent in the Northern Hemisphere. Ozone and 340 nm reflectivity changes have been obtained from multiple joined satellite time series from 1978 to 2008. The largest zonal average increases in F(sub uv) have occurred in the Southern Hemisphere. For clear-sky conditions at 50 S, zonal average F(sub uv) changes are estimated (305 nm, 23%; erythemal, 8.5%; 310 nm, 10%; vitamin D production, 12%). These are larger than at 50 N (305 nm, 9%; erythemal, 4%; 310 nm, 4%; vitamin D production, 6%). At the latitude of Buenos Aires, Argentina (34.6 S), the clear-sky Fuv increases are comparable to the increases near Washington, D. C. (38.9 N): 305 nm, 9% and 7%; erythemal, 6% and 4%; and vitamin D production, 7% and 5%, respectively.
    Keywords: Geophysics
    Type: GSFC.JA.4621.2011 , Journal of Geophysical Research - Atmospheres; 115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Multiple scattering radiative transfer results are used to calculate action spectrum weighted irradiances and fractional irradiance changes in terms of a power law in ozone OMEGA, U(OMEGA/200)(sup -RAF), where the new radiation amplification factor (RAF) is just a function of solar zenith angle. Including Rayleigh scattering caused small differences in the estimated 30 year changes in action spectrum-weighted irradiances compared to estimates that neglect multiple scattering. The radiative transfer results are applied to several action spectra and to an instrument response function corresponding to the Solar Light 501 meter. The effect of changing ozone on two plant damage action spectra are shown for plants with high sensitivity to UVB (280-315 run) and those with lower sensitivity, showing that the probability for plant damage for the latter has increased since 1979, especially at middle to high latitudes in the Southern Hemisphere. Similarly, there has been an increase in rates of erythemal skin damage and pre-vitamin D3 production corresponding to measured ozone decreases. An example conversion function is derived to obtain erythemal irradiances and the UV index from measurements with the Solar Light 501 instrument response function. An analytic expressions is given to convert changes in erythemal irradiances to changes in CIE vitamin-D action spectrum weighted irradiances.
    Keywords: Geophysics
    Type: GSFC.JA.4620.2011 , Journal of Geophysical Research (ISSN 0148-0227); 115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: Data from the TOMS series of instruments span the time period from November 1978, through the present with about a one and a-half year gap from January 1994 through July 1996. A set of four parameters derived from the TOMS measurements have been archived in the form of daily global maps or Level-3 data products. These products are total column ozone, effective surface reflectivity, aerosol index, and erythermal ultraviolet estimated at the Earth surface. A common fixed grid of I degree latitude by 1.25 degree longitude cells over the entire globe is provided daily for each parameter. These data are archived at the Goddard Space Flight Center Distributed Active Archive Center (DAAQ in Hierarchical Data Format (HDF). They are also available in a character format through the TOMS web site at http://toms.gsfc.nasa.gov. The derivations of the parameters, the mapping algorithm, and the data formats are described. The trend uncertainty for individual TOMS instruments is about 1% decade, but additional uncertainty exists in the combined data record due to uncertainty in the relative calibrations of the various TOMS.
    Keywords: Geophysics
    Type: NASA/TP-2000-209896 , NAS 1.60:209896 , Rept-2000-02532-0
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...