ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: In this study we investigate the transport of H+ ions that made up the complex ion distribution function observed by the Geotail spacecraft at 0740 UT on November 24, 1996. This ion distribution function, observed by Geotail at approximately 20 R(sub E) downtail, was used to initialize a time-dependent large-scale kinetic (LSK) calculation of the trajectories of 75,000 ions forward in time. Time-dependent magnetic and electric fields were obtained from a global magnetohydrodynamic (MHD) simulation of the magnetosphere and its interaction with the solar wind and the interplanetary magnetic field (IMF) as observed during the interval of the observation of the distribution function. Our calculations indicate that the particles observed by Geotail were scattered across the equatorial plane by the multiple interactions with the current sheet and then convected sunward. They were energized by the dawn-dusk electric field during their transport from Geotail location and ultimately were lost at the ionospheric boundary or into the magnetopause.
    Keywords: Geophysics
    Type: Substrorms; 4; -
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Multispacecraft data from the upstream solar wind, polar cusp, and inner magnetotail are used to show that the polar ionosphere responds within a few minutes to a southward IMF turning, whereas the inner tail signatures are visible within ten min from the southward turning. Comparison of two subsequent substorm onsets, one during southward and the other during northward IMF, demonstrates the dependence of the expansion phase characteristics on the external driving conditions. Both onsets are shown to have initiated in the midtail, with signatures in the inner tail and auroral oval following a few minutes later.
    Keywords: Geophysics
    Type: NASA-CR-205242 , Paper-97GL00816 , NAS 1.26:205242 , Geophysical Research Letters (ISSN 0094-8534); 24; 8; 983-986
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Observations of the three-dimensional velocity distributions of positive ions and electrons have been recently gained for the first time in Earth's distant magnetotail with the Galileo and Geotail spacecraft. For this brief discussion of these exciting results the focus is on the overall character of the ion velocity distributions during substorm activity. The ion velocity distributions within and near the magnetotail current sheet are not accurately described as convecting, isotropic Maxwellians. The observed velocity distributions are characterized by at least two robust types. The first type is similar to the 'lima bean'-shaped velocity distributions that are expected from the nonadiabatic acceleration of ions which execute Speiser-type trajectories in the current sheet. The second distribution is associated with the presence of cold ion beams that presumably also arise from the acceleration of plasma mantle ions in the electric and weak magnetic fields in the current sheet. The ion velocity distributions in a magnetic field structure that is similar to that for plasmoids are also examined. Again the velocity distributions are not Maxwellian but are indicative of nonadiabatic acceleration. An example of the pressure tensor within the plasmoid-like event is also presented because it is anticipated that the off-diagonal elements are important in a description of magnetotail dynamics. Thus our concept of magnetotail dynamics must advance from the present assumption of co-moving electron and ion Maxwellian distributions into reformulations in terms of global kinematical models and nonadiabatic particle motion.
    Keywords: Geophysics
    Type: NASA-CR-200300 , NAS 1.26:200300 , Second International Conference on Substorms; Jan 01, 1994; Fairbanks, AK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Terrestrial low frequency (LF) bursts are plasma wave phenomena that appear to be a part of the low frequency end of the auroral kilometric radiation (AKR) spectrum and are observed during strong substorms, GEOTAIL and POLAR plasma wave observations from within the magnetosphere show that the AKR increases in intensity and its lower frequency limits decrease when LF bursts are observed. The first is expected as it is shows substorm onset and the latter indicates that the AKR source region is expanding to higher altitudes. Images from the POLAR VIS Earth Camera operating in the far-UV range and the POLAR UVI experiment usually feature an auroral brightening and an expansion of the aurora to higher latitudes at the time of the LF bursts. Enhanced fluxes of X-rays from precipitating electrons have also been observed by POLAR PIXIE. High resolution ground Abstract: magnetometer data from the CANOPUS and IMAGE networks show that the LF bursts occur when the expansive phase onset signatures are most intense. The ground magnetometer data and the CANOPUS meridian scanning photometer data sometimes show that during the LF burst events the expansive phase onset starts at unusually low latitudes and moves poleward. Large injections of energetic protons and electrons have also been detected by the GOES and LANL geosynchronous satellites during LF burst events. While most of the auroral brightenings and energetic particle injections associated with the LF bursts occur near local midnight, several have been observed as early as mid-afternoon. From these various measurements, we are achieving a better understanding of the plasma and particle motions during substorms that are associated with the generation and propagation of terrestrial LF bursts
    Keywords: Geophysics
    Type: May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: On May 23, 1995, the Comprehensive Plasma Instrumentation (CPI) onboard the Geotail spacecraft observed a complex and structured ion distribution function near the magnetotail midplane at x approximately -10 R(sub E). On the same day, the Wind spacecraft observed a very high density (approximately 40/cubic cm) solar wind and an interplanetary magnetic field (IMF) that was predominantly northward but had several southward turnings. We have inferred the sources of the ions in this distribution function by following approximately 90,000 ion trajectories backward in time using time-dependent electric and magnetic fields obtained from a global MHD (magnetohydrodynamic) simulation. Wind data were used as input for the MHD model. We found that three sources contributed to this distribution: the ionosphere, the plasma mantle which had near-Earth and distant tail components, and the low latitude boundary layer (LLBL). Moreover, distinct structures in the low energy part of the distribution function were found to be associated with individual sources. Structures near 0 deg pitch angle were made up of either ionospheric or plasma mantle ions, while structures near 90 deg pitch angle were dominated by ions from the LLBL source. Particles that underwent nonadiabatic acceleration were numerous in the higher energy part of the ion distribution function, whereas ionospheric and LLBL ions were mostly adiabatic. A large proportion of the near-Earth mantle ions underwent adiabatic acceleration, while most of the distant mantle ions experienced nonadiabatic acceleration.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: This study employs Geotail plasma observations and numerical modeling to determine sources of the ions observed in the near-Earth magnetotail near midnight during a substorm. The growth phase has the low-latitude boundary layer as its most important source of ions at Geotail, but during the expansion phase the plasma mantle is dominant. The mantle distribution shows evidence of two distinct entry mechanisms: entry through a high latitude reconnection region resulting in an accelerated component, and entry through open field lines traditionally identified with the mantle source. The two entry mechanisms are separated in time, with the high-latitude reconnection region disappearing prior to substorm onset.
    Keywords: Geophysics
    Type: Paper-1999GL900112 , Geophysical Research Letters (ISSN 0094-8276); 26; 7; 955-958
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-16
    Description: On February 9, 1995, the Comprehensive Plasma Instrumentation (CPI) on the Geotail spacecraft observed a complex, structured ion distribution function near the magnetotail midplane at x approximately -30 R(sub E). On this same day the Wind spacecraft observed a quiet solar wind and an interplanetary magnetic field (IMF) that was northward for more than five hours, and an IMF B(sub y) component with a magnitude comparable to that of the RAF B(sub z) component. In this study, we determined the sources of the ions in this distribution function by following approximately 90,000 ion trajectories backward in time, using the time-dependent electric and magnetic fields obtained from a global MHD simulation. The Wind observations were used as input for the MHD model. The ion distribution function observed by Geotail at 1347 UT was found to consist primarily of particles from the dawn side low latitude boundary layer (LLBL) and from the dusk side LLBL; fewer than 2% of the particles originated in the ionosphere.
    Keywords: Geophysics
    Type: Geophysical-Monograph-104 , IGPP-Publ-4937 , Geospace Mass and Energy Flow: Results From the International Solar-Terrestrial Physics Program; 291-296
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-16
    Description: Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.
    Keywords: Geophysics
    Type: IGGPP-Publ-4877 , GEOPHYSICAL-MONOGRAPH-104 , Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics Program; 247-260
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-16
    Description: We present Geotail plasma and field observations from the middle magnetotail near X(sub GSE) = -46 R(sub E) for the time period 1400 to 1800 UT on December 14, 1994. During that period, the Wind satellite monitored the solar wind plasma and interplanetary magnetic field (IMF) upstream of the bow shock. The IMF was northward and the plasma parameters near average. Geotail observed slow tailward flows and a northward field. The plasma and field parameters indicate that Geotail is either in the plasma sheet or in a boundary layer. We used the Wind solar wind plasma and IMF data as input for a global simulation of that time interval. Comparison of the simulation results with the observational data show very good overall agreement of the magnitudes of the plasma and field parameters. In particular, the simulation reproduces the slow tailward flows and northward field found at Geotail. Small scale temporal, variations are less well reproduced. The simulation shows the formation of a broad boundary layer (which we call tail flank boundary layer, TFBL) that consists of closed flux which is formed by magnetic magnetic reconnection of IMF and lobe field lines. The simulation results indicate that Geotail is located very close to the TFBL and may have entered the TFBL proper. We show that the TFBL plays an important role in energy transport from the solar wind into the magnetosphere during northward IMF conditions.
    Keywords: Geophysics
    Type: IGPP-Publ-4647 , Paper-97GL00218 , Geophysical Research Letters (ISSN 0094-8534); 24; 8; 951-954
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-16
    Description: The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.
    Keywords: Geophysics
    Type: ; 527-532
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...