ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We examine Cluster observations of a so-called magnetosphere crater FTE, employing data from five instruments (FGM, CIS, EDI, EFW, and WHISPER), some at the highest resolution. The aim of doing this is to deepen our understanding of the reconnection nature of these events by applying recent advances in the theory of collisionless reconnection and in detailed observational work. Our data support the hypothesis of a stratified structure with regions which we show to be spatial structures. We support the bulge-like topology of the core region (R3) made up of plasma jetting transverse to reconnected field lines. We document encounters with a magnetic separatrix as a thin layer embedded in the region (R2) just outside the bulge, where the speed of the protons flowing approximately parallel to the field maximizes: (1) short (fraction of a sec) bursts of enhanced electric field strengths (up to approximately 30 mV/m) and (2) electrons flowing against the field toward the X line at approximately the same time as the bursts of intense electric fields. R2 also contains a density decrease concomitant with an enhanced magnetic field strength. At its interface with the core region, R3, electric field activity ceases abruptly. The accelerated plasma flow profile has a catenary shape consisting of beams parallel to the field in R2 close to the R2/R3 boundary and slower jets moving across the magnetic field within the bulge region. We detail commonalities our observations of crater FTEs have with reconnection structures in other scenarios. We suggest that in view of these properties and their frequency of occurrence, crater FTEs are ideal places to study processes at the separatrices, key regions in magnetic reconnection. This is a good preparation for the MMS mission.
    Keywords: Geophysics
    Type: GSFC.JA.5053.2011 , Journal of Geophysical Research; 116; A02204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We survey the Cassini magnetometer data during the deep tail orbits in 2006, and find 34 direct encounters with plasmoids. They occur as single, isolated events but also in groups of two or more plasmoids as is frequently observed at Earth . We show a case study example of three such plasmoids over three hours, where we estimate an upper limit of 5.68 GWb of flux closure, and derive a reconnection rate over this interval of 526 kV. We show the results of a superposed epoch analysis of al1 34 plasmoids indicating that, on average, plasmoids at Saturn are approix.8 min in duration and they tend toward a loop-like, as opposed to flux rope-like topology, with little or no axial core magnetic field. Our analysis shows that plasmoids at Saturn are followed by an extended interval of the post-plasmoid plasma sheet (PPPS) lasting approx.58 min. The average open magnetic flux disconnected by the continued reconnet:tion following plasmoid formation that creates the PPPS is approx.3 GWb. We calculate expected recurrence rates for plasmoids, and compare these with a derived observational recurrence rate of one plasmoid every approx.2.4 days, explaining the reasons why the spacecraft has not observed as many plasmoids as we predict will be released. We conclude that the Cassini magnetometer measurements require a combination of Vasyliunas-type closed-flux plasma sheet and Dungey-type open-flux lobe reconnection to account for the observed properties of the plasmoids and PPPS in Saturn's magnetotail.
    Keywords: Geophysics
    Type: GSFC.JA.01247.2012 , Journal of Geophysical Research; 116; A10212
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...