ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: We present modal data from QEMSCAN(registered TradeMark) beam analysis of Apollo 16 samples from drive core 64001/2. The analyzed lunar samples are thin sections 64002,6019 (5.0-8.0 cm depth) and 64001,6031 (50.0-53.1 cm depth) and sieved grain mounts 64002,262 and 64001,374 from depths corresponding to the thin sections, respectively. We also analyzed lunar highland regolith simulants NU-LHT-1M, -2M, and OB-1, low-Ti mare simulants JSC-1, -lA, -1AF, and FJS-1, and high-Ti mare simulant MLS-1. The preliminary results comprise the beginning of an internally consistent database of lunar regolith and regolith simulant mineral and glass information. This database, combined with previous and concurrent studies on phase chemistry, bulk chemistry, and with data on particle shape and size distribution, will serve to guide lunar scientists and engineers in choosing simulants for their applications. These results are modal% by phase rather than by particle type, so they are not directly comparable to most previously published lunar data that report lithic fragments, monomineralic particles, agglutinates, etc. Of the highland simulants, 08-1 has an integrated modal composition closer than NU-LHT-1M to that of the 64001/2 samples, However, this and other studies show that NU-LHT-1M and -2M have minor and trace mineral (e.g., Fe-Ti oxides and phosphates) populations and mineral and glass chemistry closer to these lunar samples. The finest fractions (0-20 microns) in the sieved lunar samples are enriched in glass relative to the integrated compositions by approx.30% for 64002,262 and approx.15% for 64001,374. Plagioclase, pyroxene, and olivine are depleted in these finest fractions. This could be important to lunar dust mitigation efforts and astronaut health - none of the analyzed simulants show this trend. Contrary to previously reported modal analyses of monomineralic grains in lunar regolith, these area% modal analyses do not show a systematic increase in plagiociase/pyroxene as size fraction decreases.
    Keywords: Geophysics
    Type: MSFC-2144 , Joint Meeting of the Geological Society of America and the Soil Science Society of America/Geological Society of America (GSA); Oct 05, 2008 - Oct 09, 2008; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Sieved grain mounts of Apollo 16 drive tube samples have been examined using QEMSCAN - an innovative electron beam technology. By combining multiple energy-dispersive X-ray detectors, fully automated control, and off-line image processing, to produce digital mineral maps of particles exposed on polished surfaces, the result is an unprecedented quantity of mineralogical and petrographic data, on a particle-by-particle basis. Experimental analysis of four size fractions (500-250 microns, 150-90 microns, 75-45 microns and 〈 20 microns), prepared from two samples (64002,374 and 64002,262), has produced a robust and uniform dataset which allows for the quantification of mineralogy; texture; particle shape, size and density; and the digital classification of distinct particle types in each measured sample. These preliminary data show that there is a decrease in plagioclase modal content and an opposing increase in glass modal content, with decreasing particle size. These findings, together with data on trace phases (metals, sulphides, phosphates, and oxides), provide not only new insights into the make-up of lunar regolith at the Apollo 16 landing site, but also key physical parameters which can be used to design lunar simulants, and compute Figures of Merit for each material produced.
    Keywords: Geophysics
    Type: MSFC-2138 , Joint Meeting of the Geological Society of America and the Soil Science Society of America; Oct 05, 2008 - Oct 09, 2008; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...