ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: It was proposed that the expansion phase of substorms results from a reduction in the large-scale electric field imparted to the magnetosphere from the solar wind, following a greater than or equal to 30 min growth phase due to an enhancement in this electric field. The reduction in the electric field is assumed to propagate anti-sunward within the magnetosphere. Triggering by a reduction in the electric field is suggested by the observation that substorms are often triggered by northward turning of the interplanetary magnetic field (IMF). However, under the theory presented here, substorms may be triggered by anything that causes an electric field reduction such as a reduction in the magnitude of the y-component of the IMF. A reduction in the large-scale electric field disrupts both the inward motion and energization of plasma sheet particles that occurs during the growth phase. It is suggested here that this can lead to formation of the expansion-phase current wedge and active aurora. The current wedge results from the magnetic drift of ions, which has a speed proportional to particle energy, and a large azimuthal gradient in mean particle energy that is expected to develop in the vicinity of magnetic midnight during the growth phase. Current wedge formation will most likely be initiated near the radial distance (approx. 6- 10 R(sub E)) of the peak in the growth-phase plasma pressure distribution, and then propagate tailward from that region. Order-of-magnitude calculations show that the above proposal can account for the rapid development of the expansion phase relative to the growth phase, the magnitude of the reduction in the cross-tail current within the current wedge, the speeds of tailward and westward expansion of the current reduction region, the speeds of poleward and westward motion of active aurora in the ionosphere, and the magnitude of wedge field-aligned currents that connect the ionospheric region of active auroral to the divergent cross-tail current within the magnetosphere. Fundamental observational signatures of substorms and other auroral-zone disturbances were examined.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: In this paper, we discuss the earth's trapped radiation environment, as described by the NASA models AP-8 and AE-8. We include a description of the sources and structure of the trapped radiation belts, and their dependence on external factors. After describing how to use the models to predict the environment, we present data from various space missions, and compare those data to the models. This shows the limits and strengths of the models. Finally, we describe alternative models of the trapped radiation belts, and discuss why they have not been widely adopted yet.
    Keywords: Geophysics
    Type: 5th International Workshop on Radiation Effects on Semiconductor Devices for Space applications; Oct 09, 2002 - Oct 11, 2002; Tajesaki; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: Two distinct measures of the Earth's Schumann resonances-the background and the transients--are studied through comparisons at the mesoscale and at the continental scale. A rough proportionality is shown between the far more abundant afternoon lightning activity and the larger positive mesoscale discharges that make sprites and simultaneously ring the Earth-ionosphere cavity to levels higher than the integration of all other lightnings.
    Keywords: Geophysics
    Type: 11th International Conference on Atmospheric Electricity; 758-761; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: It has been shown that there is an association between changes of the interplanetary magnetic field (IMF) that are expected to lead to a reduction in magnetospheric convection (northward turnings, reductions) and the onset of the expansion phase of substorms. This has been previously demonstrated by analyses of IMF data during time intervals associated with identified substorm onsets. Here we examine whether observations of northward turnings of the IMF can be used to predict the occurrence of substorms. We first identified sharp northward turnings that follow an interval of steady, southward IMF using measurements from the Wind spacecraft during the first 180 days of 1997. We also required that the northward turning be observed by either IMP-8 or GEOTAIL, in addition to Wind, and that one of the observing satellites be sufficiently close to the Earth-Sun line, or that the two observing satellites be sufficiently separated, that we are reasonably certain that the northward turning affected the magnetosphere. We also used the dual observations to estimate the arrival of the northward turning at the Earth. Using these criteria, we predicted 17 substorms. We then searched for the following signatures of substorm onset around the time of the predicted onset: auroral brightening followed by auroral bulge expansion observed by Polar UVI, geosynchronous particle injection, geosynchronous magnetic field dipolarization, and an appropriate magnetic disturbance at the surface of the Earth. Of the 17 predictions of substorms, 10 were successful in that a substorm onset was observed within 12 min of the predicted onset, 1 is indeterminate due to a lack of data at the Earth, 1 had unusual activity that we have not been able to identify, and 5 were unsuccessful. The failure of these last 5 predictions is explicable. Two of the northward turnings that failed to produce substorms were preceded by the lowest average of the set. The remaining 3 were the only cases in which the northward turning was accompanied by a simultaneous sharp increase. The increase would be expected to offset the decrease in convection that would otherwise be expected to be associated with a northward turning. These results indicate that it is an IMF change that leads to a reduction in convection, rather than just a northward turning or reduction that is associated with substorms, and that at least some substorms can be predicted by measurements of the IMF.
    Keywords: Geophysics
    Type: Dec 09, 1998; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: In recent years, morphometric data for Venus and several outer planet satellites have been collected, so we now have observational data of complex Craters formed in a large range of target properties. We present general inversion techniques that can utilize the morphometric data to quantitatively test various models of complex crater formation. The morphometric data we use in this paper are depth of a complex crater, the diameter at which the depth-diameter ratio changes, and onset diameters for central peaks, terraces, and peak rings. We tested the roles of impactor velocities and hydrostatic pressure vs. crustal strength, and we tested the specific models of acoustic fluidization (Melosh, 1982) and nonproportional growth (Schultz, 1988). Neither the acoustic fluidization model nor the nonproportional growth in their published formulations are able to successfully reproduce the data. No dependence on impactor velocity is evident from our inversions. Most of the morphometric data is consistent with a linear dependence on the ratio of crustal strength to hydrostatic pressure on a planet, or the factor c/pg.
    Keywords: Geophysics
    Type: NASA/CR-1998-207849 , NAS 1.26:207849 , LPI-Contrib-931 , Meteoritics and Planetary Science; 33; 131-143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: Many substorm expansions are triggered by interplanetary magnetic field changes that reduce magnetospheric convection. This suggests that expansion onsets are a result of a reduction in the large-scale electric field imparted to the magnetosphere from the solar wind. Such a reduction disrupts the inward motion and energization of plasma sheet particles that occur during the growth phase. It is proposed that the resulting magnetic drift of particles and a large dawn to dusk gradient in the ion energies leads to a longitudinally localized reduction in the plasma pressure, and thus, to the current wedge formation. This theory accounts for the rapid development of the expansion phase relative to growth phase, the magnitude of the wedge currents, the speeds of tailward and westward expansion of the current reduction region in the equatorial plane, and the speeds of the poleward and westward motion of active aurora in the ionosphere.
    Keywords: Geophysics
    Type: ; 267-272
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: A technique was developed for the inclusion of large scale magnetospheric current systems in magnetic field models. The region 1 and 2 Birkeland current systems are included in the source surface model of the terrestrial magnetosphere. The region 1 and 2 Birkeland currents are placed in the model using a series of field aligned, infinitely thin wire segments. The normal component of the magnetic field from these currents is calculated on the surface of the magnetopause and shielded using image current carrying wires placed outside of the magnetosphere. It is found that the inclusion of the Birkeland currents in the model results in a northward magnetic field in the near-midnight tail, leading to the closure of previously open flux in the tail, and a southward magnetic field in the flanks. A sunward shift in the separatrix is observed.
    Keywords: Geophysics
    Type: Third International Conference on Substorms (ICS-3); 127-132; ESA-SP-389
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...