ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (222)
  • 1995-1999  (221)
  • 1955-1959  (1)
  • 1950-1954
  • 1
    Publication Date: 2019-08-17
    Description: The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3 in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO, required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production Of O3 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about I part per billion by volume each day. This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.
    Keywords: Geophysics
    Type: Science; 279; 49-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We analyze the structure of magnetospheric transients observed at the dusk-side low-latitude magnetopause with the Interball Tail Probe. Ion and magnetic field measurements are used to investigate one particular transient in more detail. This transient has distinct non-symmetric structure with the plasma characteristics and the flow properties of the leading part of the transient being quite different from those in the trailing part of the transient. The region separating these two parts corresponds to the change of the sign in the B(n) component. These observations support an earlier conclusion that some plasma irregularities within the Low Latitude Boundary Layer (LLBL), formed as a result of sporadic reconnection, disconnect from the magnetopause, propagate and dissipate in the magnetosphere, and form what we call Disconnected Magnetosheath Transfer Events (DMTEs).
    Keywords: Geophysics
    Type: Paper-1998GL900167 , Geophysical Research Letters (ISSN 0094-8276); 25; 23; 4305-4308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-15
    Description: Recovery from enhanced chlorine conditions in the lower stratospheric polar regions of both hemispheres is investigated using data from the Upper Atmosphere Research Satellite (UARS). Microwave Limb Sounder (MLS) measurements of ClO within the polar vortices are used to infer ClO(sub x) (ClO + 2Cl202) abundances that are then correlated with simultaneous Cryogenic Limb Array Etalon Spectrometer (CLAES) measurements of ClON02 and Halogen Occultation Experiment (HALOE) measurements of HCl obtained starting within 5 days of the end of the MLS and CLAES high-latitude observing periods in each hemisphere. Time series of vortex-averaged mixing ratios are calculated on two potential temperature surfaces (585 K and 465 K) in the lower stratosphere for approximately month-long intervals during late winter: August 17 - September 17, 1992, in the southern hemisphere and February 12 - March 16, 1993, in the northern hemisphere. The observed mixing ratios are adjusted for the effects of vertical transport using diabatic vertical velocities estimated from CLAES tracer data. In the northern hemisphere, the decrease in ClO, is balanced on both surfaces by an increase in ClON02- In the southern hemisphere, continuing polar stratospheric cloud activity prevents ClO from undergoing sustained decline until about September 3. In contrast to the northern hemisphere, there is no significant chemical change in vortex-averaged ClON02 at 465 K, and there is an apparent decrease in ClON02 at 585 K, even after the enhanced ClO abundances have started to recede. Results from the SLIMCAT chemical transport model initialized with UARS data and run with OH + ClO yields HCl + 02 as an 8% channel suggest that the primary recovery product in the south during this time period is not ClON02, but HCl. HALOE HCl mixing ratios are extrapolated back to the time of the MLS and CLAES data. At 585 K, the chlorine budget can be made to balance by extrapolating HCl back to a value of 0.6 parts per billion by volume (ppbv) at the beginning of the study period; at 465 K, the contribution from extrapolated HCl is not sufficient to offset the loss in ClOx, and there is a slight imbalance between the decrease in reactive chlorine and the change in chlorine reservoirs. The difficulty in closing the chlorine budget in the southern hemisphere may arise from complications caused by ongoing activation, incomplete photochemical assumptions, and/or inadequate data quality.
    Keywords: Geophysics
    Type: Paper 96JD00580 , Journal of Geophysical Research (ISSN 0148-0227); 101; D13; 18,835-18,859
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.
    Keywords: Geophysics
    Type: NASA-CR-200341 , NAS 1.26:200341
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: We are studying the magnetic cloud event of January 6-11, 1997. Specifically, we have investigated the response of the magnetosphere to the shock wave in front of the magnetic cloud on January 10, 1997 using data from WIND, GEOTAIL and POLAR spacecraft as well as ground magnetometer data. The WIND spacecraft, which was located at about 100 Re upstream from the Earth, observed the arrival of the shock wave front at 005OUT. Geotail was located at the equatorial magnetopause (approx. 8.7 Re), while POLAR was located in the northern dawn sector at 8.4 Re, 6.1 MLT and 61.1 MLAT. A magnetic signature was nearly simultaneously observed at about 0104 UT at the POLAR and Geotail spacecraft. Particle density increases were observed on WIND and Geotail, but not on POLAR. The UV aurora shows an asymmetrical dawn-dusk intensification and presubstorm activity. The significance of these findings will be discussed.
    Keywords: Geophysics
    Type: Scientific Assembly: Advances in Auroral Plasma Physics; Jul 12, 1998 - Jul 19, 1998; Nagoya; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: On May 23, 1995, the Comprehensive Plasma Instrumentation (CPI) onboard the Geotail spacecraft observed a complex and structured ion distribution function near the magnetotail midplane at x approximately -10 R(sub E). On the same day, the Wind spacecraft observed a very high density (approximately 40/cubic cm) solar wind and an interplanetary magnetic field (IMF) that was predominantly northward but had several southward turnings. We have inferred the sources of the ions in this distribution function by following approximately 90,000 ion trajectories backward in time using time-dependent electric and magnetic fields obtained from a global MHD (magnetohydrodynamic) simulation. Wind data were used as input for the MHD model. We found that three sources contributed to this distribution: the ionosphere, the plasma mantle which had near-Earth and distant tail components, and the low latitude boundary layer (LLBL). Moreover, distinct structures in the low energy part of the distribution function were found to be associated with individual sources. Structures near 0 deg pitch angle were made up of either ionospheric or plasma mantle ions, while structures near 90 deg pitch angle were dominated by ions from the LLBL source. Particles that underwent nonadiabatic acceleration were numerous in the higher energy part of the ion distribution function, whereas ionospheric and LLBL ions were mostly adiabatic. A large proportion of the near-Earth mantle ions underwent adiabatic acceleration, while most of the distant mantle ions experienced nonadiabatic acceleration.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: During the unusually cold 1994-95 Arctic winter, the Microwave Limb Sounder observed enhanced chlorine monoxide (ClO) in late Dec and throughout Feb and early Mar. Late Dec ClO was higher than during any of the previous 3 years, consistent with the colder early winter. Between late Dec 1994 and early Feb 1995, 465 K (about 50 hPa) vortex-averaged ozone (03) decreased by about 15%, with local decreases of about 30%; additional local decreases of about 5% were seen between early Feb and early Mar. Transport calculations indicate that vortex-averaged chemical loss between late Dec and early Feb was about 20% at 465 K, with about 1/4 of that masked by downward transport of O3. This Arctic chemical O3 loss is not readily detectable in MLS column O3 data.
    Keywords: Geophysics
    Type: Paper-95GL03591 , Geophysical Research Letters (ISSN 0094-8534); 23; 1; 85-88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The "4-day wave" is an eastward moving quasi-nondispersive feature with period near 4 days occurring near the winter polar stratopause. This paper presents evidence of the 4-day feature in Microwave Limb Sounder (MLS) temperature, geopotential height, and ozone data from the late southern winters of 1992 and 1993. Space-time spectral analyses reveal a double-peaked temperature structure consisting of one peak near the stratopause and another in the lower mesosphere, with an out-of-phase relationship between the two peaks. This double- peaked structure is reminiscent of recent three-dimensional barotropic/baroclinic instability model predictions and is observed here for the first time. The height variation of the 4-day ozone signal is shown to compare well with a linear advective-photochemical tracer model. Negative regions of quasigeostrophic potential vorticity (PV) gradient and positive Eliassen-Palm flux divergence are shown to occur, consistent with instability dynamics playing a role in wave forcing. Spectral analyses of PV derived from MLS geopotential height fields reveal a 4-day signal peaking near the polar stratopause. The three-dimensional structure of the 4-day wave resembles the potential vorticity "charge" concept, wherein a PV anomaly in the atmosphere (analogous to an electrical charge in a dielectric material) induces a geopotential field, a vertically oriented temperature dipole, and circulation about the vertical axis.
    Keywords: Geophysics
    Type: NASA/CR-97-207746 , NAS 1.26:207746 , Journal of Atmospheric Sciences; o 54; 3; 420-434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-16
    Description: This study investigates the sources of the ions up the complex and nonisotropic H(+) velocity distribution functions observed by the Geotail spacecraft on May 23, 1995, in the near-Earth magnetotail region and recently reported by Frank et al. [1996]. A distribution function observed by Geotail at -10 R(sub E) downtail is used as input for the large scale kinetic (LSK) technique to follow the trajectories of approximately 90,000 H(+) ions backward in time. Time-dependent magnetic and electric fields are taken from a global magnetohydrodynamic (MHD) simulation of the magnetosphere and its interactions with appropriate solar wind and IMF conditions. The ion population described by the Geotail distribution function was found to consist of a mixture of particles originating from three distinct sources: the ionosphere, the low latitude boundary layer (LLBL), and the high latitude plasma mantle. Ionospheric particles had direct access along field lines to Geotail, and LLBL ions convected adiabatically to the Geotail location. Plasma mantle ions, on the other hand, exhibited two distinct types of behavior. Most near-Earth mantle ions reached Geotail on adiabatic orbits, while distant mantle ions interacted with the current sheet tailward of Geotail and had mostly nonadiabatic orbits. Ions from the ionosphere, the LLBL, and the near-Earth mantle were directly responsible for the well-separated, low energy structures easily discernible in the observed and modeled distribution functions. Distant mantle ions formed the higher energy portion of the Geotail distribution. Thus, we have been successful in extracting useful information about particle sources, their relative contribution to the measured distribution and the acceleration processes that affected particle transport during this time.
    Keywords: Geophysics
    Type: Paper-97GL00060 , IGPP-Publ-4672 , Geophysical Research Letters (ISSN 0094-8534); 24; 8; 955-958
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: Hawkeye plasma, magnetic field, and plasma wave instruments directly sampled the throat of the northern polar cusp as the orientation of the Interplanetary Magnetic Field (IMF) changed from southward to northward on July 3, 1974. Two distinct regions in the polar cusp were identified based on magnetic field, plasma flow and magnetic and electric noise: the interior and exterior cusps. The observations show highly variable flows in the exterior portion of the cusp and constantly strong dawn-dusk flows in the interior portion during periods of strong IMF By component. Results of a minimum variance analysis of the magnetic field at each cusp interface crossing provides evidence that the magnetopause surface normal deviated highly from empirical models. During intervals of relatively steady solar wind dynamic pressure, the motion of the cusp relative to the slow moving spacecraft was modulated by the varying IMF clock angle as observed by IMP 8 in the upstream solar wind. The motion did not show a correlation with internal processes monitored by the A E index. We propose that observed plasma flow patterns and cusp motion are results of reconnection between the IMF and the magnetospheric magnetic field. Flow velocity observed in the interior cusp is consistent with stress balance for a reconnection process. This unique interval provides an opportunity for detailed studies of the plasma, magnetic field, and plasma wave properties in both the exterior and interior cusp.
    Keywords: Geophysics
    Type: Paper-97JA00743 , Journal of Geophysical Research (ISSN 0148-0227); 102; A6; 11,335-11,347
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...