ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Deformed chondrules in CM2 Murchison have been found to define a prominent foliation [1,2] and lineation [3] in 3D using X-ray computed tomography (XCT). It has been hypothesized that chondrules in foliated chondrites deform by "squeezing" into surrounding pore space [4,5], a process that also likely removes primary porosity [6]. However, shock stage classification based on olivine extinction in Murchison is consistently low (S1-S2) [4-5,7] implying that significant intracrystalline plastic deformation of olivine has not occurred. One objective of our study is therefore to determine the microstructural mechanisms and phases that are accommodating the impact stress and resulting in relative displacements within the chondrules. Another question regarding impact deformation in Murchison is whether it facilitated aqueous alteration as has been proposed for the CMs which generally show a positive correlation between degree of alteration and petrofabric strength [7,2]. As pointed out by [2], CM Murchison represents a unique counterpoint to this correlation: it has a strong petrofabric but a relatively low degree of aqueous alteration. However, Murchison may not represent an inconsistency to the proposed causal relationship between impact and alteration, if it can be established that the incipient aqueous alteration post-dated chondrule deformation. Methods: Two thin sections from Murchison sample USNM 5487 were cut approximately perpendicular to the foliation and parallel to lineation determined by XCT [1,3] and one section was additionally polished for EBSD. Using a combination of optical petrography, SEM, EDS, and EBSD several chondrules were characterized in detail to: determine phases, find microstructures indicative of strain, document the geometric relationships between grain-scale microstructures and the foliation and lineation direction, and look for textural relationships of alteration minerals (tochilinite and Mg-Fe serpentine) that indicate timing of their formation relative to deformation event(s). Preliminary Results: Deformed chondrules are dominated by forsterite and clinoenstatite with lesser amounts of Fe-Mg serpentine, sulfides, and low calcium pyroxene. Olivine grains are commonly fractured but generally show sharp optical extinction. The pyroxene, in contrast, is not only fractured but also often displays undulose extinction. In addition, the clinoenstatite is frequently twinned but it is unclear whether the twins are the result of mechanical deformation or inversion from protoenstatite [8]. EBSD work is currently ongoing to determine if areas of higher crystallographic strain can be imaged and mapped, and to determine the pyroxene twin orientations. In regards to alteration, we have found evidence for post-deformation formation of tochilinite and Mg-Fe serpentine indicating that aqueous alteration has indeed post-dated the deformation of the chondrules.
    Keywords: Geophysics; Space Sciences (General)
    Type: JSC-CN-31631 , Annual Meeting of the Meteoritical Society; Sep 07, 2014 - Sep 12, 2014; Casablanca; Morocco
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Xenolithic clasts are often found in a wide variety of meteorite groups. Some ordinary chondrite clasts are interesting since these clasts might have originated from Ceres which shares crossing orbits with a possible ordinary chondrite parent body, Hebe. The Zag meteorite contains a dark clast dominated by saponite, serpentine, carbonates, sulfides, magnetite, minor olivine and pyroxene, which is consistent with formation on a large, carbonaceous, aqueously active body, e.g., Ceres. Abundant large C-rich grains up to 20 microns were found in the Zag clast as well. Such large C-rich grains are unique among any other meteorites in our knowledge, and will provide important clues to decipher the origin of the clast and accretion history. C-rich grains were selected in the Zag dark clast using SEM and approximately 100 nm-thick sections were prepared using a focused ion beam (FIB) at NASA-JSC. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at Advanced Light Source, LBNL, and BL-13A at the Photon Factory, KEK. Subsequently, the FIB section was analyzed for H, C and N isotopic compositions using a CAMECA NanoSIMS 50L ion microprobe at Kochi Institute for Core Sample Research, JAMSTEC
    Keywords: Geophysics; Space Sciences (General)
    Type: JSC-CN-36531 , METSOC 2016 Meteoritical Society Annual Meeting; Aug 07, 2016 - Aug 12, 2016; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...