ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Plasma Physics  (2)
  • Geophysics; Numerical Analysis  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: The particle data delivered by the Fast Plasma Investigation instrument aboard National Aeronautics and Space Administration's Magnetospheric Multiscale (MMS) mission allow for exceptionally high-resolution examination of the electron and ion phase space in the near-Earth plasma environment. It is necessary to identify populations which originate from instrumental effects. Using Fast Plasma Investigation's Dual Electron Spectrometers, we isolate a high-energy (approximately kiloelectron volt) beam, present while the spacecraft are in the solar wind, which exhibits an azimuthal drift with period associated with the spacecraft spin. We show that this population is consistent with negative hydrogen ions H generated by a double charge exchange interaction between the incident solar wind H+ ions and the metallic surfaces within the instrument. This interaction is likely to occur at the deflector plates close to the instrument aperture. The H density is shown to be approximately 0.2-0.4% of the solar wind ion density, and the energy of the negative ion population is shown to be 70% of the incident solar wind energy. These negative ions may introduce errors in electron velocity moments on the order of 0.2-0.4% of the solar wind velocity and significantly higher errors in the electron temperature.
    Keywords: Plasma Physics
    Type: GSFC-E-DAA-TN61758 , Journal of Geophysical Research: Space Physics (e-ISSN 2169-9402); 123; 8; 6161-6170
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).
    Keywords: Geophysics; Numerical Analysis
    Type: GSFC-E-DAA-TN41236 , Journal of Geophysical Research: Planets (ISSN 2169-9097) (e-ISSN 2169-9100); 121; 5; 871-894
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.
    Keywords: Plasma Physics
    Type: GSFC-E-DAA-TN39408 , Nature Communications (e-ISSN 2041-1723); 8; 14719
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...