ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-17
    Description: A detailed magnetic analysis has been conducted on the borehole CJ-1 (172.3 m in length) from the Changjiang (Yangtze) River delta. Results show that the dominant magnetic carriers are magnetite and hematite. Palaeomagnetic results reveal that high-frequency changes in palaeomagnetic inclinations are tied significantly to abnormal anisotropy of magnetic susceptibility (AMS) patterns due to effects of the high-energy depositional environment in this region. On the basis of AMS patterns, doubtful palaeomagnetic directional anomalies can be distinguished from authentic palaeomagnetic excursions. Magnetostratigraphic results indicate that the Matuyama–Brunhes boundary (MBB) was recorded at a depth of ~152.5 m. The presence of several short-lived inclination anomalies implied that the sedimentation could be continuous even at the millennial timescale at certain depth intervals bracketing these fast geomagnetic events. In summary, our study provides new insights into constructing reliable magnetostratigraphy in the delta region. Moreover, our new magnetostratigraphy of the Changjiang River delta deposits will facilitate studies on the relevant long-term palaeoenvironmental evolution of the delta.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-05
    Description: Magnetic mineralogy of crustal rocks has important implications for understanding continental crustal evolution and origin of regional magnetic anomalies. However, magnetic properties of the deep continental crust are still poorly understood. In this paper, measurements of density ( ), mass-specific magnetic susceptibility ( ), natural remanent magnetization (NRM) and magnetic hysteresis loops, temperature-dependent magnetic susceptibility ( – T ), chemical and mineral analyses were conducted on Archean gneiss samples from the Jixian petrophysical section in the Precambrian terrain, northeastern North China Craton, with the aim of refining understanding of magnetic phase transformations in the deep crustal rocks. Results show that density and rock magnetic properties change distinctly with metamorphic facies. The dominant magnetic mineral is magnetite, while a little hematite is present in a few samples. Together with geochemical and mineralogical compositions, it is inferred that progressive increase in metamorphic grade from east to west is the major cause for magnetic enhancement of the lower crust in the studied section. Therefore, we conclude that study of magnetic phases of deep crustal rocks can offer important insights into the history of high metamorphic grade terranes.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-04
    Description: Magnetic mineralogy of crustal rocks has important implications for understanding continental crustal evolution and origin of regional magnetic anomalies. However, magnetic properties of the deep continental crust are still poorly understood. In this paper, measurements of density ( ), mass-specific magnetic susceptibility ( ), natural remanent magnetization (NRM) and magnetic hysteresis loops, temperature-dependent magnetic susceptibility ( – T ), chemical and mineral analyses were conducted on Archean gneiss samples from the Jixian petrophysical section in the Precambrian terrain, northeastern North China Craton, with the aim of refining understanding of magnetic phase transformations in the deep crustal rocks. Results show that density and rock magnetic properties change distinctly with metamorphic facies. The dominant magnetic mineral is magnetite, while a little hematite is present in a few samples. Together with geochemical and mineralogical compositions, it is inferred that progressive increase in metamorphic grade from east to west is the major cause for magnetic enhancement of the lower crust in the studied section. Therefore, we conclude that study of magnetic phases of deep crustal rocks can offer important insights into the history of high metamorphic grade terranes.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...