ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-28
    Description: Biogeochemical signatures preserved in ancient sedimentary rocks provide clues to the nature and timing of the oxygenation of the Earth's atmosphere. Geochemical data suggest that oxygenation proceeded in two broad steps near the beginning and end of the Proterozoic eon (2,500 to 542 million years ago). The oxidation state of the Proterozoic ocean between these two steps and the timing of deep-ocean oxygenation have important implications for the evolutionary course of life on Earth but remain poorly known. Here we present a new perspective on ocean oxygenation based on the authigenic accumulation of the redox-sensitive transition element molybdenum in sulphidic black shales. Accumulation of authigenic molybdenum from sea water is already seen in shales by 2,650 Myr ago; however, the small magnitudes of these enrichments reflect weak or transient sources of dissolved molybdenum before about 2,200 Myr ago, consistent with minimal oxidative weathering of the continents. Enrichments indicative of persistent and vigorous oxidative weathering appear in shales deposited at roughly 2,150 Myr ago, more than 200 million years after the initial rise in atmospheric oxygen. Subsequent expansion of sulphidic conditions after about 1,800 Myr ago (refs 8, 9) maintained a mid-Proterozoic molybdenum reservoir below 20 per cent of the modern inventory, which in turn may have acted as a nutrient feedback limiting the spatiotemporal distribution of euxinic (sulphidic) bottom waters and perhaps the evolutionary and ecological expansion of eukaryotic organisms. By 551 Myr ago, molybdenum contents reflect a greatly expanded oceanic reservoir due to oxygenation of the deep ocean and corresponding decrease in sulphidic conditions in the sediments and water column.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, C -- Lyons, T W -- Bekker, A -- Shen, Y -- Poulton, S W -- Chu, X -- Anbar, A D -- England -- Nature. 2008 Mar 27;452(7186):456-9. doi: 10.1038/nature06811.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, California 92521, USA. cscot002@ucr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18368114" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Geologic Sediments/chemistry ; History, Ancient ; Molybdenum/analysis ; Oceans and Seas ; Oxygen/*analysis/chemistry ; Seawater/*chemistry ; Sulfides/chemistry ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-02-19
    Description: The response of the ocean redox state to the rise of atmospheric oxygen about 2.3 billion years ago (Ga) is a matter of controversy. Here we provide iron isotope evidence that the change in the ocean iron cycle occurred at the same time as the change in the atmospheric redox state. Variable and negative iron isotope values in pyrites older than about 2.3 Ga suggest that an iron-rich global ocean was strongly affected by the deposition of iron oxides. Between 2.3 and 1.8 Ga, positive iron isotope values of pyrite likely reflect an increase in the precipitation of iron sulfides relative to iron oxides in a redox stratified ocean.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouxel, Olivier J -- Bekker, Andrey -- Edwards, Katrina J -- New York, N.Y. -- Science. 2005 Feb 18;307(5712):1088-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Chemistry and Geochemistry Department, Geomicrobiology Group, Woods Hole Oceanographic Institution, Mail Stop 8, Woods Hole, MA 02543, USA. orouxel@whoi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15718467" target="_blank"〉PubMed〈/a〉
    Keywords: *Atmosphere ; Chemical Precipitation ; Ferric Compounds/analysis ; Geologic Sediments/*chemistry ; Iron/*analysis ; Iron Isotopes/*analysis ; Oceans and Seas ; Oxidation-Reduction ; Oxygen ; *Seawater ; Sulfides/*analysis ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...