ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Evaporation  (1)
  • Geographic distribution  (1)
  • Drosera
  • δ15N
  • 1995-1999  (2)
Collection
Publisher
Years
Year
  • 1
    ISSN: 1432-1939
    Keywords: C4 photosynthesis ; δ13C values ; Grass flora of Namibia ; Poaceae ; Geographic distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The grass flora of Namibia (374 species in 110 genera) shows surprisingly little variation in δ13C values along a rainfall gradient (50–600 mm) and in different habitat conditions. However, there are significant differences in the δ13C values between the metabolic types of the C4 photosynthetic pathway. NADP-ME-type C4 species exhibit the highest δ13C values (−11.7 ‰) and occur mainly in regions with high rainfall. NAD-ME-type C4 species have significantly lower δ13C values (−13.4 ‰) and dominate in the most arid part of the precipitation regime. PCK-type C4 species play an intermediate role (−12.5 ‰) and reach a maximum abundance in areas of intermediate precipitation. This pattern is also evident in genera containing species of different metabolic types. Within the same genus NAD species reach more negative δ13C values than PCK species and δ13C values decreased with rainfall. Also in Aristida, with NADP-ME-type photosynthesis, δ13C values decreased from −11 ‰ in the inland region (600 mm precipitation) to −15 ‰ near the coast (150 mm precipitation), which is a change in discrimination which is otherwise associated by a change in metabolism. The exceptional C3 species Eragrostis walteri and Panicum heterostachyum are coastal species experiencing 50 mm precipitation only. Many of the rare species and monotypic genera grow in moist habitats rather than in the desert, and they are not different in their carbon isotope ratios from the more common flora. The role of species diversity with respect to habitat occupation and carbon metabolism is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 121 (1995), S. 79-87 
    ISSN: 1573-5052
    Keywords: Canopy ; Evaporation ; Leaf area index ; Scaling ; Surface conductance ; Stomata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examine conductances for evaporation from both vegetation and soil in response to environmental variables. Data from a vertically-structured pristine forest of Nothofagus are presented as an example of the effects of biodiversity on the scaling of conductances between tiers of plant organisation. Available data sets of maximum leaf stomatal conductances (g lmax ) and bulk vegetation surface conductances (G smax ) are compared. Overall, the ratio G smax /g lmax is consistently close to 3 for seven major vegetation types of diverse structure. An analytical model accounts for this close relationship, and in particular how G smax is conservative against changes in leaf area index because of the compensating decrease in plant canopy transpiration and increase in soil evaporation as leaf area index diminishes. The model is also successfully tested by comparison with canopy conductances of emergent trees measured in the Nothofagus forest. The constraint of vegetation surface conductance and evaporation via environmental regulation by irradiance, air saturation deficit and root zone water supply are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...