ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-01
    Description: A method is outlined by means of which it is possible to estimate high-resolution vertical displacements due to an earthquake even in the case where high-resolution topography is lacking before the earthquake. This result can be achieved by combining a highly accurate, post-event digital elevation model (DEM), for example lidar, with archived satellite imagery. The method is illustrated by calculating vertical displacements for the 2010 El Mayor-Cucapah earthquake. For this earthquake, there are both pre- and post-event lidar DEMs from which vertical displacements may also be estimated after correcting for the lateral advection of topography due to horizontal displacements. A comparison between the two means of deriving vertical displacements shows generally good agreement, with the displacements obtained using satellite imagery performing better in high relief areas. As a result of this property, we are able to trace the vertical offsets due to the El Mayor-Cucapah earthquake as the rupture jumped from the Pescadores fault to the Borrego fault in propagating through the high relief of the Sierra Cucapah.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-07
    Description: In November 2010, intense seismic activity including 29 events with a magnitude above 5.0, started in the western part of the Gulf of Aden, where the structure of the oceanic spreading ridge is characterized by a series of N115°-trending slow-spreading segments set within an EW-trending rift. Using signals recorded by permanent and temporary networks in Djibouti and Yemen, we located 1122 earthquakes, with a magnitude ranging from 2.1 to 5.6 from 2010 November 1 to 2011 March 31. By looking in detail at the space–time distribution of the overall seismicity, and both the frequency and the moment tensor of large earthquakes, we re-examine the chronology of this episode. In addition, we also interpret the origin of the activity using high-resolution bathymetric data, as well as from observations of seafloor cable damage caused by high temperatures and lava flows. The analysis allows us to identify distinct active areas. First, we interpret that this episode is mainly related to a diking event along a specific ridge segment, located at E044°. In light of previous diking episodes in nearby subaerial rift segments, for which field constraints and both seismic and geodetic data exist, we interpret the space–time evolution of the seismicity of the first few days. Migration of earthquakes suggests initial magma ascent below the segment centre. This is followed by a southeastward dike propagation below the rift immediately followed by a northwestward dike propagation below the rift ending below the northern ridge wall. The cumulative seismic moment associated with this sequence reaches 9.1 x 10 17 Nm, and taking into account a very low seismic versus geodetic moment, we estimate a horizontal opening of ~0.58–2.9 m. The seismic activity that followed occurred through several bursts of earthquakes aligned along the segment axis, which are interpreted as short dike intrusions implying fast replenishment of the crustal magma reservoir feeding the dikes. Over the whole period, the opening is estimated to be ~1.76–8.8 m across the segment. A striking feature of this episode is that the seismicity remained confined within one individual segment, whereas the adjacent en-echelon segments were totally quiescent, suggesting that the magma supply system of one segment is disconnected from those of the neighbouring segments. Second, we identify activity induced by the first intrusion with epicentres aligned along an N035°E-trending, ~30 km long at the northwestern end of the active opening segment. This group encompasses more than seven earthquakes with magnitude larger than 5.0, and with strike-slip focal mechanisms consistent with the faults identified in the bathymetry and the structural pattern of the area. We propose that a transform fault is currently in formation which indicates an early stage of the ridge segmentation, at the locus of the trend change of the spreading ridge, which also corresponds to the boundary between a clear oceanic lithosphere and the zone of transform between continental and oceanic crust.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-04
    Description: The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr –1 , 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5–6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-17
    Description: The North Anatolian Fault Zone (NAFZ) starts to branch off in the western Bolu plain. The branches of the NAFZ in this location create the Almacık block which is surrounded by the latest surface ruptures of significant earthquakes that occurred between 1944 and 1999, but its northeastern part remains unruptured. The most recently formed rupture, that was a result of the 1999 November 12 Düzce earthquake, ended to the northwest of the Bakacak Fault. The connection between the Bakacak Fault and the main branch of the NAFZ via the Bolu plain has until now remained unknown. This paper establishes that the route of the missing link runs through the Dağkent, Kasaplar and Bürnük faults, a finding achieved with the help of seismic reflection studies. The paper also argues that the cross cutting nature of these newly determined faults and a stress analysis based on focal mechanism solutions of recent earthquakes demonstrate the termination of the suggested pull-apart nature of the Bolu plain.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-03
    Description: Crystallization experiments in the dendritic regime have been carried out in hypergravity conditions (from 1 to 1300 g) from an ammonium chloride solution (NH 4 Cl and H 2 O). A commercial centrifuge was equipped with a slip ring so that electric power (needed for a Peltier device and a heating element), temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. Ultrasound measurements (2–6 MHz) were used to detect the position of the front of the mushy zone and to determine attenuation in the mush. Temperature measurements were used to control a Peltier element extracting heat from the bottom of the setup and to monitor the evolution of crystallization in the mush and in the liquid. A significant increase of solid fraction and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core. This has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity and attenuation of the inner core are strongly affected by melting.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-20
    Description: Joint analysis of the seismic velocities and geoid, gravity and gravity gradients are used to constrain the viscosity profile within the mantle as well as the lateral density variations. Recent ESA's Gravity field and steady-state Ocean Circulation Explorer measurements of the second-order derivatives of the Earth's gravity potential give new possibilities to determine these mantle properties. Using a simple mantle model and seismic tomography results, we investigate how the gravitational potential, the three components of the gravity vector and the gravity gradients can bring information on the radial viscosity profile and on the mantle mass anomalies. We start with lateral density variations in the Earth's mantle based either on slab history or deduced from seismic tomography. The main uncertainties are: for the latter case, the relationship between seismic velocity and density—the so-called density/velocity scaling factor—and for the former case, the variation with depth of the density contrast between the cold slabs and the surrounding mantle. We perform a Monte Carlo search for the viscosity and the density/velocity scaling factor profiles within the mantle, which allows to fit the observed geoid, gravity and gradients of gravity. We compute the posterior probability distribution of the unknown parameters, and find that the gravity gradients improve the estimate of the scaling factor within the upper mantle, because of their sensitivity to the masses within the upper mantle, whereas the geoid and the gravity better constrain the scaling factor in the lower mantle. In the upper mantle, it is less than 0.02 in the upper part and about 0.08–0.14 in the lower part, and it is significantly larger for depths greater than 1200 km (about 0.32–0.34). In any case, the density/velocity scaling factor between 670 and 1150 km depth is not well constrained. We show that the viscosity of the upper part of the mantle is strongly correlated with the viscosity of the lower part of the mantle and that the viscosity profile is characterized by a decrease in the lower part of the upper mantle (about 10 20 –2  x  10 20 Pa s) and by an increase (about 10 23 –2  x  10 23 Pa s) at the top of the lower mantle (between 670 and 1150 km). The viscosity of the mantle below 1150 km depth is well estimated in our Monte Carlo search and is about 10 22 –4  x  10 22 Pa s.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-05
    Description: We investigate how uncertainties in seismic and density structure of the crust propagate to uncertainties in mantle density structure. The analysis is based on interpretation of residual upper-mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect of the crust from the observed satellite gravity field data (GOCE Direct release 3). Thus calculated residual mantle gravity anomalies are caused mainly by a heterogeneous density distribution in the upper mantle. Given a relatively small range of expected compositional density variations in the lithospheric mantle, knowledge on uncertainties associated with incomplete information on crustal structure is of utmost importance for progress in gravity modelling. Uncertainties in the residual upper-mantle gravity anomalies result chiefly from uncertainties in (i) seismic V P velocity–density conversion for the crust and (ii) uncertainties in the seismic crustal structure (thickness and average V P velocities of individual crustal layers, including the sedimentary cover). We examine the propagation of these uncertainties into determinations of lithospheric mantle density and analyse both sources of possible uncertainties by applying different velocity-to-density conversions and by introducing variations into the crustal structure which correspond to typical resolution of high-quality and low-quality seismic models. We apply our analysis to Siberia (the West Siberian Basin and the Siberian Craton) for which a new regional seismic crustal model, SibCrust, has recently become available. For the same region, we also compute upper-mantle gravity and density anomalies based on three global crustal models (CRUST 5.1, CRUST 2.0 and CRUST 1.0) and compare the results based on four different crustal models. A large uncertainty in the V P -to-density conversion may result in the uncertainty in lithospheric mantle density anomalies of ca. 0.02–0.03 g cm –3 (i.e. 0.5–1 per cent, which is comparable to compositional density anomalies expected for continental lithosphere mantle). Similar values of uncertainties may be caused by a 0.2 km s –1 error in average crustal V P velocities or by a 2 km uncertainty in the Moho depth. One of the largest uncertainties is caused by errors in thickness of the sedimentary layer, and a 2 km error leads to ca. 0.03 g cm –3 error in lithospheric mantle densities. Large deviations (locally ±10 km) of the Moho depth in global crustal models (CRUST 5.1, CRUST2.0 and CRUST1.0) from the high-resolution regional seismic model of the crust, SibCrust, may produce artefact residual mantle gravity anomalies of up to ±150 mGal locally, caused by large errors in crustal gravity corrections. These errors in gravity anomalies produce up to ca. 0.04 g cm –3 ( ca. 1.2 per cent) errors in density of the lithospheric mantle, which may well correspond to the amplitude of real density anomalies in the mantle. Our results demonstrate that gravity modelling alone cannot reliably constrain the crustal structure, including the Moho depth and thickness of sediments.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-07
    Description: In this study, a new method for computing the sensitivity of the glacial isostatic adjustment (GIA) forward solution with respect to the Earth's mantle viscosity, the so-called the forward sensitivity method (FSM), and a method for computing the gradient of data misfit with respect to viscosity parameters, the so-called adjoint-state method (ASM), are presented. These advanced formal methods complement each other in the inverse modelling of GIA-related observations. When solving this inverse problem, the first step is to calculate the forward sensitivities by the FSM and use them to fix the model parameters that do not affect the forward model solution, as well as identifying and removing redundant parts of the inferred viscosity structure. Once the viscosity model is optimized in view of the forward sensitivities, the minimization of the data misfit with respect to the viscosity parameters can be carried out by a gradient technique which makes use of the ASM. The aim is this paper is to derive the FSM and ASM in the forms that are closely associated with the forward solver of GIA developed by Martinec. Since this method is based on a continuous form of the forward model equations, which are then discretized by spectral and finite elements, we first derive the continuous forms of the FSM and ASM and then discretize them by the spectral and finite elements used in the discretization of the forward model equations. The advantage of this approach is that all three methods (forward, FSM and ASM) have the same matrix of equations and use the same methodology for the implementation of the time evolution of stresses. The only difference between the forward method and the FSM and ASM is that the different numerical differencing schemes for the time evolution of the Maxwell and generalized Maxwell viscous stresses are applied in the respective methods. However, it requires only a little extra computational time for carrying out the FSM and ASM numerically. An straightforward approach to compute the gradient of the data misfit is the brute-force method, whereby the partial derivatives of the misfit with respect to model parameters are approximated by the centred difference of two forward model runs. Although the brute-force method is useful for computing the gradient of the data misfit with respect to a small number of model parameters, it becomes expensive for a viscosity model with a large number of parameters. The ASM offers an efficient alternative for computing the gradient of the misfit since the computational time of the ASM is independent of the number of viscosity parameters. The ASM is thus highly efficient for calculating the gradient of the misfit for models with large numbers of parameters. However, the forward-model solution for each time step must be stored, hence the memory demands scale linearly with the number of time steps. This is the main drawback of the ASM.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-29
    Description: The resistivity structure of the lithospheric mantle beneath the Proterozoic Grenville Province in southern Ontario, Canada is investigated using 84 magnetotelluric (MT) sites divided into four profiles. Depth-based regional geoelectric dimensionality analyses of the MT responses indicate that the mantle lithosphere north of Lake Ontario can be subdivided into upper (45–150 km) and deeper (〉200 km) lithospheric mantle layers with regional strike azimuths of N85°E (±5°) and N65°E (±5°), respectively. MT responses from the Grenville Front and the northwest part of the Central Gneiss Belt are compatible with the presence of 2-D resistivity structures but farther to the southeast, in the southeast part of the Central Gneiss Belt and Central Metasedimentary Belt, they suggest the presence of localized 3-D structures. 2-D inversion of distortion-free MT responses images a large scale very resistive (〉20 000  m) region that extends 300 km southeast of the Grenville Front and for at least 800 km along-strike in the lithospheric mantle beneath the Grenville Province. This feature is interpreted to be Superior Province lithosphere and the corresponding N85°E geoelectric strike to be associated with the fabric of the Superior Province. The base of the resistor reaches depths of 280 km on two of the three MT profiles north of Lake Ontario and this depth is interpreted to be the base of the lithosphere. A large region of enhanced conductivity in the lower lithosphere, spatially correlated with decreased seismic velocity, is bounded to the northwest by a subvertical resistivity anomaly located near the Kirkland Lake and Cobalt kimberlite fields. The enhanced conductivity in the lower lithosphere is attributed to refertilization by fluids associated with Cretaceous kimberlite magmatism and can be explained by water content in olivine of 50 wt ppm in background areas with higher values in a localized anomaly beneath the kimberlite fields. Farther to the southeast the resistivity models include a lithospheric conductor between 100 and 150 km depth beneath the Central Metasedimentary Belt. The enhanced conductivity is attributed to grain boundary graphite films, associated with the Cretaceous kimberlitic magmatic process, or to water and carbon, introduced into the mantle during the pre-Grenvillian tectonism.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-03-26
    Description: The resistivity structure of the lithospheric mantle beneath the Proterozoic Grenville Province in southern Ontario, Canada is investigated using 84 magnetotelluric (MT) sites divided into four profiles. Depth-based regional geoelectric dimensionality analyses of the MT responses indicate that the mantle lithosphere north of Lake Ontario can be subdivided into upper (45–150 km) and deeper (〉200 km) lithospheric mantle layers with regional strike azimuths of N85°E (±5°) and N65°E (±5°), respectively. MT responses from the Grenville Front and the northwest part of the Central Gneiss Belt are compatible with the presence of 2-D resistivity structures but farther to the southeast, in the southeast part of the Central Gneiss Belt and Central Metasedimentary Belt, they suggest the presence of localized 3-D structures. 2-D inversion of distortion-free MT responses images a large scale very resistive (〉20 000  m) region that extends 300 km southeast of the Grenville Front and for at least 800 km along-strike in the lithospheric mantle beneath the Grenville Province. This feature is interpreted to be Superior Province lithosphere and the corresponding N85°E geoelectric strike to be associated with the fabric of the Superior Province. The base of the resistor reaches depths of 280 km on two of the three MT profiles north of Lake Ontario and this depth is interpreted to be the base of the lithosphere. A large region of enhanced conductivity in the lower lithosphere, spatially correlated with decreased seismic velocity, is bounded to the northwest by a subvertical resistivity anomaly located near the Kirkland Lake and Cobalt kimberlite fields. The enhanced conductivity in the lower lithosphere is attributed to refertilization by fluids associated with Cretaceous kimberlite magmatism and can be explained by water content in olivine of 50 wt ppm in background areas with higher values in a localized anomaly beneath the kimberlite fields. Farther to the southeast the resistivity models include a lithospheric conductor between 100 and 150 km depth beneath the Central Metasedimentary Belt. The enhanced conductivity is attributed to grain boundary graphite films, associated with the Cretaceous kimberlitic magmatic process, or to water and carbon, introduced into the mantle during the pre-Grenvillian tectonism.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...