ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-18
    Description: The emergence of new sequencing technologies has facilitated the use of bacterial whole genome alignments for evolutionary studies and outbreak analyses. These datasets, of increasing size, often include examples of multiple different mechanisms of horizontal sequence transfer resulting in substantial alterations to prokaryotic chromosomes. The impact of these processes demands rapid and flexible approaches able to account for recombination when reconstructing isolates’ recent diversification. Gubbins is an iterative algorithm that uses spatial scanning statistics to identify loci containing elevated densities of base substitutions suggestive of horizontal sequence transfer while concurrently constructing a maximum likelihood phylogeny based on the putative point mutations outside these regions of high sequence diversity. Simulations demonstrate the algorithm generates highly accurate reconstructions under realistically parameterized models of bacterial evolution, and achieves convergence in only a few hours on alignments of hundreds of bacterial genome sequences. Gubbins is appropriate for reconstructing the recent evolutionary history of a variety of haploid genotype alignments, as it makes no assumptions about the underlying mechanism of recombination. The software is freely available for download at github.com/sanger-pathogens/Gubbins , implemented in Python and C and supported on Linux and Mac OS X.
    Keywords: Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-17
    Description: We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keane, Thomas M -- Goodstadt, Leo -- Danecek, Petr -- White, Michael A -- Wong, Kim -- Yalcin, Binnaz -- Heger, Andreas -- Agam, Avigail -- Slater, Guy -- Goodson, Martin -- Furlotte, Nicholas A -- Eskin, Eleazar -- Nellaker, Christoffer -- Whitley, Helen -- Cleak, James -- Janowitz, Deborah -- Hernandez-Pliego, Polinka -- Edwards, Andrew -- Belgard, T Grant -- Oliver, Peter L -- McIntyre, Rebecca E -- Bhomra, Amarjit -- Nicod, Jerome -- Gan, Xiangchao -- Yuan, Wei -- van der Weyden, Louise -- Steward, Charles A -- Bala, Sendu -- Stalker, Jim -- Mott, Richard -- Durbin, Richard -- Jackson, Ian J -- Czechanski, Anne -- Guerra-Assuncao, Jose Afonso -- Donahue, Leah Rae -- Reinholdt, Laura G -- Payseur, Bret A -- Ponting, Chris P -- Birney, Ewan -- Flint, Jonathan -- Adams, David J -- 077192/Wellcome Trust/United Kingdom -- 079912/Wellcome Trust/United Kingdom -- 082356/Wellcome Trust/United Kingdom -- 083573/Wellcome Trust/United Kingdom -- 083573/Z/07/Z/Wellcome Trust/United Kingdom -- 085906/Wellcome Trust/United Kingdom -- 085906/Z/08/Z/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 2T15LM007359/LM/NLM NIH HHS/ -- A6997/Cancer Research UK/United Kingdom -- BB/F022697/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0800024/Medical Research Council/United Kingdom -- K25 HL080079/HL/NHLBI NIH HHS/ -- MC_U127561112/Medical Research Council/United Kingdom -- MC_U137761446/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2011 Sep 14;477(7364):289-94. doi: 10.1038/nature10413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921910" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Animals, Laboratory/genetics ; Gene Expression Regulation/*genetics ; Genetic Variation/*genetics ; Genome/*genetics ; Genomics ; Mice/classification/*genetics ; Mice, Inbred C57BL/genetics ; Mice, Inbred Strains/*genetics ; *Phenotype ; Phylogeny ; Quantitative Trait Loci/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-17
    Description: Structural variation is widespread in mammalian genomes and is an important cause of disease, but just how abundant and important structural variants (SVs) are in shaping phenotypic variation remains unclear. Without knowing how many SVs there are, and how they arise, it is difficult to discover what they do. Combining experimental with automated analyses, we identified 711,920 SVs at 281,243 sites in the genomes of thirteen classical and four wild-derived inbred mouse strains. The majority of SVs are less than 1 kilobase in size and 98% are deletions or insertions. The breakpoints of 160,000 SVs were mapped to base pair resolution, allowing us to infer that insertion of retrotransposons causes more than half of SVs. Yet, despite their prevalence, SVs are less likely than other sequence variants to cause gene expression or quantitative phenotypic variation. We identified 24 SVs that disrupt coding exons, acting as rare variants of large effect on gene function. One-third of the genes so affected have immunological functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428933/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428933/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yalcin, Binnaz -- Wong, Kim -- Agam, Avigail -- Goodson, Martin -- Keane, Thomas M -- Gan, Xiangchao -- Nellaker, Christoffer -- Goodstadt, Leo -- Nicod, Jerome -- Bhomra, Amarjit -- Hernandez-Pliego, Polinka -- Whitley, Helen -- Cleak, James -- Dutton, Rebekah -- Janowitz, Deborah -- Mott, Richard -- Adams, David J -- Flint, Jonathan -- 079912/Wellcome Trust/United Kingdom -- 082356/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 13031/Cancer Research UK/United Kingdom -- G0800024/Medical Research Council/United Kingdom -- MC_U137761446/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2011 Sep 14;477(7364):326-9. doi: 10.1038/nature10432.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921916" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Breakpoints ; Exons/genetics ; Female ; Gene Expression ; Genetic Variation/*genetics ; Genome/*genetics ; Genomics ; Genotype ; Male ; Mice ; Mice, Inbred Strains/*genetics/immunology ; Mutagenesis, Insertional/genetics ; *Phenotype ; Quantitative Trait Loci/genetics ; Rats ; Retroelements/genetics ; Sequence Deletion/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...