ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-22
    Description: Quantifying the number of deleterious mutations per diploid human genome is of crucial concern to both evolutionary and medical geneticists. Here we combine genome-wide polymorphism data from PCR-based exon resequencing, comparative genomic data across mammalian species, and protein structure predictions to estimate the number of functionally consequential single-nucleotide polymorphisms (SNPs) carried by each of 15 African American (AA) and 20 European American (EA) individuals. We find that AAs show significantly higher levels of nucleotide heterozygosity than do EAs for all categories of functional SNPs considered, including synonymous, non-synonymous, predicted 'benign', predicted 'possibly damaging' and predicted 'probably damaging' SNPs. This result is wholly consistent with previous work showing higher overall levels of nucleotide variation in African populations than in Europeans. EA individuals, in contrast, have significantly more genotypes homozygous for the derived allele at synonymous and non-synonymous SNPs and for the damaging allele at 'probably damaging' SNPs than AAs do. For SNPs segregating only in one population or the other, the proportion of non-synonymous SNPs is significantly higher in the EA sample (55.4%) than in the AA sample (47.0%; P 〈 2.3 x 10(-37)). We observe a similar proportional excess of SNPs that are inferred to be 'probably damaging' (15.9% in EA; 12.1% in AA; P 〈 3.3 x 10(-11)). Using extensive simulations, we show that this excess proportion of segregating damaging alleles in Europeans is probably a consequence of a bottleneck that Europeans experienced at about the time of the migration out of Africa.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lohmueller, Kirk E -- Indap, Amit R -- Schmidt, Steffen -- Boyko, Adam R -- Hernandez, Ryan D -- Hubisz, Melissa J -- Sninsky, John J -- White, Thomas J -- Sunyaev, Shamil R -- Nielsen, Rasmus -- Clark, Andrew G -- Bustamante, Carlos D -- P50 GM065509/GM/NIGMS NIH HHS/ -- P50 GM065509-070006/GM/NIGMS NIH HHS/ -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-03/HG/NHGRI NIH HHS/ -- R01 HL072904/HL/NHLBI NIH HHS/ -- England -- Nature. 2008 Feb 21;451(7181):994-7. doi: 10.1038/nature06611.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288194" target="_blank"〉PubMed〈/a〉
    Keywords: Africa/ethnology ; Alleles ; Computational Biology ; Emigration and Immigration ; Europe/ethnology ; Exons/genetics ; Genome, Human/*genetics ; Heterozygote ; Homozygote ; Humans ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide/*genetics ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...