ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0192-253X
    Keywords: Dictyostelium ; stimulation kinetics ; aggregation-related genes ; prestalk-related genes ; prespore genes ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A compilation of literature data and recent experiments led to the following conclusions regarding cyclic adenosine 3′:5′ monophosphate (cAMP) regulation of gene expression. Several classes of cAMP-induced gene expression can be discriminated by sensitivity to stimulation kinetics. The aggregation-related genes respond only to nanomolar cAMP pulses. The prestalk-related genes respond both to nano-molar pulses and persistent micromolar stimulation. The prespore specific genes respond only to persistent micromolar stimulation.The induction of the aggregation- and prestalk-related genes by nanomolar cAMP pulses may share a common transduction pathway, which does not involve cAMP, while involvement of the inositol 1,4,5-trisphosphate (IP3)/Ca2+ pathway is unlikely. Induction of the expression of prespore and prestalk-related genes by micromolar cAMP stimuli utilizes divergent signal processing mechanisms. cAMP-induced prespore gene expression does not involve cAMP and probably also not cyclic guanosine 3′.5′ monophosphate (cGMP) as intracellular intermediate. Involvement of cAMP-induced phospholipase C (PLC) activation in this pathway is suggested by the observation that IP3 and 1,2-diacylglycerol (DAG) can induce prespore gene expression, albeit in a somewhat indirect manner and by the observation that Li+ and Ca2+ antagonists inhibit prespore gene expression. Cyclic AMP induction of prestalk-related gene expression is inhibited by IP3 and DAG and promoted by Li+, and is relatively insensitive to Ca2+ antagonists, which indicates that PLC activation does not mediate prestalk-related gene expression. Neither prespore nor prestalk-related gene expression utilizes the sustained cAMP-induced pHi increase as intracellular intermediate.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 9 (1988), S. 589-596 
    ISSN: 0192-253X
    Keywords: Li+-ions ; pattern formation ; gene regulation ; transmembrane signal transduction ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We investigated the effect of LiCl on pattern formation and cAMP-regulated gene expression in Dictyostelium discoideum. In intact slugs, 5 mM LiCl induces an almost complete redifferentiation of prespore into prestalk cells. We found that LiCl acts by interfering with the transduction of extracellular cAMP to cell-type-specific gene expression; LiCl inhibits the induction of prespore-specific gene expression by cAMP, while it promotes the induction of prestalk-associated gene expression by cAMP. Our results indicate that two divergent pathways transduce the extracellular cAMP signal to, respectively, prestalk and prespore gene expression.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...