ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-09-02
    Description: Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual's DNA can be used to infer their geographic origin with surprising accuracy-often to within a few hundred kilometres.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Novembre, John -- Johnson, Toby -- Bryc, Katarzyna -- Kutalik, Zoltan -- Boyko, Adam R -- Auton, Adam -- Indap, Amit -- King, Karen S -- Bergmann, Sven -- Nelson, Matthew R -- Stephens, Matthew -- Bustamante, Carlos D -- R01 GM083606/GM/NIGMS NIH HHS/ -- R01 GM083606-01/GM/NIGMS NIH HHS/ -- R01 GM083606-02/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Nov 6;456(7218):98-101. doi: 10.1038/nature07331. Epub 2008 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Interdepartmental Program in Bioinformatics, University of California-Los Angeles, Los Angeles, California 90095, USA. jnovembre@ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18758442" target="_blank"〉PubMed〈/a〉
    Keywords: Emigration and Immigration ; Europe/ethnology ; Genetic Variation/*genetics ; *Genetics, Population ; Genome, Human/genetics ; Genome-Wide Association Study ; Genotype ; *Geography ; Humans ; Phylogeny ; Polymorphism, Single Nucleotide ; Principal Component Analysis ; Quantitative Trait, Heritable ; Sample Size
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-03-12
    Description: Understanding the genetic mechanisms underlying natural variation in gene expression is a central goal of both medical and evolutionary genetics, and studies of expression quantitative trait loci (eQTLs) have become an important tool for achieving this goal. Although all eQTL studies so far have assayed messenger RNA levels using expression microarrays, recent advances in RNA sequencing enable the analysis of transcript variation at unprecedented resolution. We sequenced RNA from 69 lymphoblastoid cell lines derived from unrelated Nigerian individuals that have been extensively genotyped by the International HapMap Project. By pooling data from all individuals, we generated a map of the transcriptional landscape of these cells, identifying extensive use of unannotated untranslated regions and more than 100 new putative protein-coding exons. Using the genotypes from the HapMap project, we identified more than a thousand genes at which genetic variation influences overall expression levels or splicing. We demonstrate that eQTLs near genes generally act by a mechanism involving allele-specific expression, and that variation that influences the inclusion of an exon is enriched within and near the consensus splice sites. Our results illustrate the power of high-throughput sequencing for the joint analysis of variation in transcription, splicing and allele-specific expression across individuals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089435/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089435/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pickrell, Joseph K -- Marioni, John C -- Pai, Athma A -- Degner, Jacob F -- Engelhardt, Barbara E -- Nkadori, Everlyne -- Veyrieras, Jean-Baptiste -- Stephens, Matthew -- Gilad, Yoav -- Pritchard, Jonathan K -- GM077959/GM/NIGMS NIH HHS/ -- MH084703-01/MH/NIMH NIH HHS/ -- R01 GM077959/GM/NIGMS NIH HHS/ -- R01 GM077959-05/GM/NIGMS NIH HHS/ -- R01 MH084703/MH/NIMH NIH HHS/ -- R01 MH084703-02/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Apr 1;464(7289):768-72. doi: 10.1038/nature08872. Epub 2010 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, The University of Chicago, Chicago 60637, USA. pickrell@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20220758" target="_blank"〉PubMed〈/a〉
    Keywords: African Continental Ancestry Group/genetics ; Alleles ; Consensus Sequence/genetics ; DNA, Complementary/genetics ; Exons/genetics ; *Gene Expression Profiling ; Gene Expression Regulation/*genetics ; Genetic Variation/*genetics ; Humans ; Nigeria ; Polymorphism, Single Nucleotide/genetics ; Quantitative Trait Loci/genetics ; RNA Splice Sites/genetics ; RNA, Messenger/*analysis/*genetics ; Sequence Analysis, RNA ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-07
    Description: The mapping of expression quantitative trait loci (eQTLs) has emerged as an important tool for linking genetic variation to changes in gene regulation. However, it remains difficult to identify the causal variants underlying eQTLs, and little is known about the regulatory mechanisms by which they act. Here we show that genetic variants that modify chromatin accessibility and transcription factor binding are a major mechanism through which genetic variation leads to gene expression differences among humans. We used DNase I sequencing to measure chromatin accessibility in 70 Yoruba lymphoblastoid cell lines, for which genome-wide genotypes and estimates of gene expression levels are also available. We obtained a total of 2.7 billion uniquely mapped DNase I-sequencing (DNase-seq) reads, which allowed us to produce genome-wide maps of chromatin accessibility for each individual. We identified 8,902 locations at which the DNase-seq read depth correlated significantly with genotype at a nearby single nucleotide polymorphism or insertion/deletion (false discovery rate = 10%). We call such variants 'DNase I sensitivity quantitative trait loci' (dsQTLs). We found that dsQTLs are strongly enriched within inferred transcription factor binding sites and are frequently associated with allele-specific changes in transcription factor binding. A substantial fraction (16%) of dsQTLs are also associated with variation in the expression levels of nearby genes (that is, these loci are also classified as eQTLs). Conversely, we estimate that as many as 55% of eQTL single nucleotide polymorphisms are also dsQTLs. Our observations indicate that dsQTLs are highly abundant in the human genome and are likely to be important contributors to phenotypic variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501342/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501342/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Degner, Jacob F -- Pai, Athma A -- Pique-Regi, Roger -- Veyrieras, Jean-Baptiste -- Gaffney, Daniel J -- Pickrell, Joseph K -- De Leon, Sherryl -- Michelini, Katelyn -- Lewellen, Noah -- Crawford, Gregory E -- Stephens, Matthew -- Gilad, Yoav -- Pritchard, Jonathan K -- HG006123/HG/NHGRI NIH HHS/ -- MH084703/MH/NIMH NIH HHS/ -- MH090951/MH/NIMH NIH HHS/ -- R01 HG006123/HG/NHGRI NIH HHS/ -- R01 HG006123-01/HG/NHGRI NIH HHS/ -- R01 HG006123-02/HG/NHGRI NIH HHS/ -- R01 MH090951/MH/NIMH NIH HHS/ -- R01 MH090951-01/MH/NIMH NIH HHS/ -- R01 MH090951-02/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 5;482(7385):390-4. doi: 10.1038/nature10808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22307276" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/genetics/metabolism ; *DNA Footprinting ; Deoxyribonuclease I/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation/*genetics ; Genetic Variation/*genetics ; Genome, Human/genetics ; Humans ; Phenotype ; Polymorphism, Single Nucleotide/genetics ; Quantitative Trait Loci/*genetics ; Sequence Analysis, DNA ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...