ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-12-24
    Description: Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075879/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075879/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graveley, Brenton R -- Brooks, Angela N -- Carlson, Joseph W -- Duff, Michael O -- Landolin, Jane M -- Yang, Li -- Artieri, Carlo G -- van Baren, Marijke J -- Boley, Nathan -- Booth, Benjamin W -- Brown, James B -- Cherbas, Lucy -- Davis, Carrie A -- Dobin, Alex -- Li, Renhua -- Lin, Wei -- Malone, John H -- Mattiuzzo, Nicolas R -- Miller, David -- Sturgill, David -- Tuch, Brian B -- Zaleski, Chris -- Zhang, Dayu -- Blanchette, Marco -- Dudoit, Sandrine -- Eads, Brian -- Green, Richard E -- Hammonds, Ann -- Jiang, Lichun -- Kapranov, Phil -- Langton, Laura -- Perrimon, Norbert -- Sandler, Jeremy E -- Wan, Kenneth H -- Willingham, Aarron -- Zhang, Yu -- Zou, Yi -- Andrews, Justen -- Bickel, Peter J -- Brenner, Steven E -- Brent, Michael R -- Cherbas, Peter -- Gingeras, Thomas R -- Hoskins, Roger A -- Kaufman, Thomas C -- Oliver, Brian -- Celniker, Susan E -- U01 HB004271/HB/NHLBI NIH HHS/ -- U01 HG004271/HG/NHGRI NIH HHS/ -- U01 HG004271-01/HG/NHGRI NIH HHS/ -- ZIA DK015600-14/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 24;471(7339):473-9. doi: 10.1038/nature09715. Epub 2010 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-6403, USA. graveley@neuron.uchc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179090" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/genetics ; Animals ; Base Sequence ; Drosophila Proteins/genetics ; Drosophila melanogaster/embryology/*genetics/*growth & development ; Exons/genetics ; Female ; *Gene Expression Profiling ; Gene Expression Regulation, Developmental/*genetics ; Genes, Insect/genetics ; Genome, Insect/genetics ; Male ; MicroRNAs/genetics ; Oligonucleotide Array Sequence Analysis ; Protein Isoforms/genetics ; RNA Editing/genetics ; RNA, Messenger/analysis/genetics ; RNA, Small Untranslated/analysis/genetics ; Sequence Analysis ; Sex Characteristics ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-15
    Description: Recursive splicing is a process in which large introns are removed in multiple steps by re-splicing at ratchet points--5' splice sites recreated after splicing. Recursive splicing was first identified in the Drosophila Ultrabithorax (Ubx) gene and only three additional Drosophila genes have since been experimentally shown to undergo recursive splicing. Here we identify 197 zero nucleotide exon ratchet points in 130 introns of 115 Drosophila genes from total RNA sequencing data generated from developmental time points, dissected tissues and cultured cells. The sequential nature of recursive splicing was confirmed by identification of lariat introns generated by splicing to and from the ratchet points. We also show that recursive splicing is a constitutive process, that depletion of U2AF inhibits recursive splicing, and that the sequence and function of ratchet points are evolutionarily conserved in Drosophila. Finally, we identify four recursively spliced human genes, one of which is also recursively spliced in Drosophila. Together, these results indicate that recursive splicing is commonly used in Drosophila, occurs in humans, and provides insight into the mechanisms by which some large introns are removed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duff, Michael O -- Olson, Sara -- Wei, Xintao -- Garrett, Sandra C -- Osman, Ahmad -- Bolisetty, Mohan -- Plocik, Alex -- Celniker, Susan E -- Graveley, Brenton R -- R01 GM095296/GM/NIGMS NIH HHS/ -- R01GM095296/GM/NIGMS NIH HHS/ -- U54 HG006994/HG/NHGRI NIH HHS/ -- U54HG006994/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 May 21;521(7552):376-9. doi: 10.1038/nature14475. Epub 2015 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. ; Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970244" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cells, Cultured ; Drosophila melanogaster/*genetics ; Exons/genetics ; Female ; Genes, Insect/genetics ; Genome, Insect/*genetics ; Humans ; Introns/genetics ; Male ; Nuclear Proteins/deficiency/genetics/metabolism ; Nucleotides/*genetics ; RNA Splice Sites/genetics ; RNA Splicing/*genetics ; Reproducibility of Results ; Ribonucleoproteins/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...