ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0947-6539
    Keywords: biomineralization ; calcite ; crystal morphology ; mosaic structure ; symmetry reduction ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Organisms can exert a remarkable degree of control over crystal growth. One way of achieving this is by the adsorption of specialized macromolecules on specific planes of the growing crystals. With continued growth of the crystal, the macromolecules are incorporated inside the crystal bulk. Their presence does not change the crystal structure, but creates discontinuities in the perfect lattice. Here we study in detail three unusual cases of reduction in symmetry at the level of crystal domain shapes, induced by this controlled intercalation. We examined sponge spicules, which are single crystals of Mg-bearing calcite. They were specifically chosen for this study, because their morphologies do not reflect the hexagonal symmetry of calcite. Their crystal textures (coherence lengths and angular spreads) were characterized by high-resolution X-ray diffraction with well-collimated synchrotron radiation. The results are compared to analogous studies of synthetic calcite and Mg-bearing calcite. In all the selected spicules reduction in symmetry is observed in the coherence lengths among symmetry-related crystallographic directions. The reconstructed shapes of the domains of perfect structure closely match the specific spicule morphologies. The synthetic crystals show no such reduction in symmetry. Although the manner by which such exquisite control is achieved is not known, we envisage it involving a combination of oriented nucleation with either physical or stereochemically driven adsorption.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für die chemische Industrie 104 (1992), S. 159-176 
    ISSN: 0044-8249
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Viele Organismen können Kristallisationsprozesse erstaunlich gut kontrollieren. Die räumlich orientierte Keimbildung, die Kontrolle der Kristallmorphologie, die Bildung einzigartiger Protein-Einkristall-Composite und die Erzeugung geordneter multikristalliner Bereiche, all dies liegt durchaus im Bereich des biologisch Machbaren. Die Untersuchung dieser Kontroll-und Designprinzipien der Biomineralisation ist ein faszinierendes Arbeitsgebiet. Das Verständ-nis dieser biologischen und chemischen Prozesse und deren technische Umsetzung kann einer-seits zur verbesserten Herstellung synthetischer Materialien, andererseits zur Lösung vieler ernster medizinischer Probleme beitragen, die in Verbindung mit der Mineralisation stehen.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 31 (1992), S. 153-169 
    ISSN: 0570-0833
    Keywords: Crystal growth ; Biomineralization ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The control of crystal formation has been developed to a remarkable degree by many organisms. Oriented nucleation, control over crystal morphology, formation of unique composites of proteins and single crystals, and the production of ordered multicrystal arrays, are all well within the realm of biological capability. Understanding the control and design principles in biomineralization is a fascinating subject that may well contribute to the improved fabrication of synthetic materials on the one hand, and to the solution of many serious pathological problems involving mineralization, on the other.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...