ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1434-193X
    Keywords: Fluorine ; Sulfoxides ; Nucleotide analogues ; Asymmetric synthesis ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: D- and L-(diethoxyphosphoryl)difluoromethyl nucleoside analogues 10 have been synthesized using the building block approach, starting from chiral fluorinated molecules. The key steps of the synthetic sequence were condensation of 2-methyl-5-(4-methylphenylsulfinyl)pent-2-ene (1) and ethyl 2-(diethoxyphosphoryl)-2,2-difluoroacetate (2), reduction of the thus formed ketones 3 to alcohols 4, reductive removal of the sulfur moiety to give hydroxy phosphonates 6, and oxidative cyclization to give furanose derivatives 8.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-193X
    Keywords: Fluorine ; Lactones ; Annulation ; Ketene ; Sulfoxides ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: -Enantiomerically pure α,α-dichloro β-fluoroalkyl γ-p-tolylthio γ-butyrolactones trans-6a-c have been obtained with excellent stereocontrol (〉 98:2) and enantiomeric purity (〉 98:2) by sulfoxide-directed lactonization (Marino's annu-lation reaction) of β-fluoroalkyl vinyl sulfoxides (R)-(E)-5a-c with dichloroketene. Highly chemoselective dechlorination and desulfurization reactions performed on trans-6c efficiently provided the β-chlorodifluoromethyl γ-butyrolactone (S)-8c, the absolute stereochemistry of which was determined by X-ray diffraction analysis of its γ-p-tolylthio precursor (2R,3S)-7c.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-193X
    Keywords: β-Iminosulfoxides ; Quaternary stereocentre ; Pictet-Spengler reaction ; Alkaloids ; Fluorine ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Enantiomerically pure 1-trifluoromethyl-tetrahydroisoquinoline alkaloid analogues, in which C-1 is a quaternary stereogenic centre, have been synthesized by stereoselective intramolecular Pictet-Spengler reaction of the N-arylethyl γ-trifluoro-β-iminosulfoxide (R)-3, and subsequent elaborations of the sulfinyl auxiliary. The absolute stereochemistry of the stereogenic centre was determined by X-ray diffraction on the α-phenylpropionic ester (1R,2′S)-10.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1434-193X
    Keywords: Fluorine ; Pheromones ; Sulfoxides ; Sulcatol ; Asymmetric synthesis ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: -The pheromone (R)-(-)-sulcatol (10a) and three of its enantiomeric mono-, di-, and trifluoro analogues 10b-d have been synthesized, in six steps and with good overall yields, starting from chiral (R)-2-methyl-5-[(4-methylphenyl)sulfinyl]pent-2-ene (1) and commercially available fluorinated or non-fluorinated acetates.Supporting information for this article is available on the WWW under http://www.wileY-Vch.de/contents/jc_2046/1999/98375_s.pdf or from the author.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1434-193X
    Keywords: Fluorine ; Cycloadditions ; Nitrones ; Asymmetric induction ; Sulfoxides ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: 3-(Fluoroalkyl)isoxazolidines 6 and -2,3-dihydroisoxazoles 8 have been obtained in enantiomerically pure form with good diastereoselectivity by 1,3-dipolar cycloaddition of diethyl fumarate and dimethylacetylene dicarboxylate, respectively, to the chiral fluorinated nitrone (R)-5. The latter has been prepared from the β-fluoromethyl-β-oxo sulfoxide (RS)-1, by a synthetic sequence where the chiral and enantiomerically pure sulfinyl function acts as a removable source of chirality. Reductive opening of isoxazolidines 6 then afforded amino fluoromethyl diols 7 in good yields.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Liebigs Annalen 2000 (2000), S. 1387-1389 
    ISSN: 1434-193X
    Keywords: Natural products ; Epoxidations ; Asymmetric synthesis ; Fluorine ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: ---The synthesis of enantiomerically and diastereomerically pure (-)-(1R,2R,5R)- and (-)-(1R,2S,5R)-2-fluoro frontalin (7) starting from (+)-(1S)-menthyl-(R)-toluene-4-sulfinate, methylmagnesium bromide, methyl fluoroacetate, 4-pentenyl bromide and diazomethane is described. The absolute stereochemistry was unambiguously determined by X-ray analysis of (+)-(1S,2R,5S,RS)-5, an intermediate in the synthesis of the enantiomeric (+)-(1S,2R,5S)-2-fluoro frontalin (7).
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-07-03
    Description: Reprogramming of somatic cells is a valuable tool to understand the mechanisms of regaining pluripotency and further opens up the possibility of generating patient-specific pluripotent stem cells. Reprogramming of mouse and human somatic cells into pluripotent stem cells, designated as induced pluripotent stem (iPS) cells, has been possible with the expression of the transcription factor quartet Oct4 (also known as Pou5f1), Sox2, c-Myc and Klf4 (refs 1-11). Considering that ectopic expression of c-Myc causes tumorigenicity in offspring and that retroviruses themselves can cause insertional mutagenesis, the generation of iPS cells with a minimal number of factors may hasten the clinical application of this approach. Here we show that adult mouse neural stem cells express higher endogenous levels of Sox2 and c-Myc than embryonic stem cells, and that exogenous Oct4 together with either Klf4 or c-Myc is sufficient to generate iPS cells from neural stem cells. These two-factor iPS cells are similar to embryonic stem cells at the molecular level, contribute to development of the germ line, and form chimaeras. We propose that, in inducing pluripotency, the number of reprogramming factors can be reduced when using somatic cells that endogenously express appropriate levels of complementing factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jeong Beom -- Zaehres, Holm -- Wu, Guangming -- Gentile, Luca -- Ko, Kinarm -- Sebastiano, Vittorio -- Arauzo-Bravo, Marcos J -- Ruau, David -- Han, Dong Wook -- Zenke, Martin -- Scholer, Hans R -- England -- Nature. 2008 Jul 31;454(7204):646-50. doi: 10.1038/nature07061. Epub 2008 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Rontgenstrasse 20, 48149 Munster, NRW, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18594515" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*cytology/metabolism ; Animals ; Cell Differentiation/genetics ; Cells, Cultured ; *Cellular Reprogramming ; Chimera ; DNA-Binding Proteins/genetics/metabolism ; Female ; Gene Expression Profiling ; Genes, myc/genetics ; HMGB Proteins/genetics/metabolism ; Homeodomain Proteins/genetics ; Kruppel-Like Transcription Factors/genetics/metabolism ; Male ; Mice ; Mice, Nude ; Mice, Transgenic ; Neurons/*cytology ; Octamer Transcription Factor-3/genetics/metabolism ; Pluripotent Stem Cells/*cytology/*metabolism ; Proteins/genetics ; Proto-Oncogene Proteins c-myc/metabolism ; RNA, Untranslated ; SOXB1 Transcription Factors ; Transcription Factors/genetics/metabolism ; Transduction, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-09-01
    Description: Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors (OCT4 (also called POU5F1), SOX2, c-Myc and KLF4). We previously reported that Oct4 alone is sufficient to reprogram directly adult mouse neural stem cells to iPS cells. Here we report the generation of one-factor human iPS cells from human fetal neural stem cells (one-factor (1F) human NiPS cells) by ectopic expression of OCT4 alone. One-factor human NiPS cells resemble human embryonic stem cells in global gene expression profiles, epigenetic status, as well as pluripotency in vitro and in vivo. These findings demonstrate that the transcription factor OCT4 is sufficient to reprogram human neural stem cells to pluripotency. One-factor iPS cell generation will advance the field further towards understanding reprogramming and generating patient-specific pluripotent stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jeong Beom -- Greber, Boris -- Arauzo-Bravo, Marcos J -- Meyer, Johann -- Park, Kook In -- Zaehres, Holm -- Scholer, Hans R -- England -- Nature. 2009 Oct 1;461(7264):649-3. doi: 10.1038/nature08436.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Rontgenstrasse 20, 48149 Munster, NRW, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19718018" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; *Cell Dedifferentiation ; Cell Differentiation ; Cell Line ; *Cellular Reprogramming ; DNA Methylation ; Embryonic Stem Cells/cytology/metabolism ; Epigenesis, Genetic ; Fetus/*cytology ; Gene Expression Profiling ; Germ Layers/cytology/metabolism ; Humans ; Mice ; Neurons/*cytology/metabolism ; Octamer Transcription Factor-3/genetics/*metabolism ; Pluripotent Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-04
    Description: Mechanisms controlling the proliferative activity of neural stem and progenitor cells (NSPCs) have a pivotal role to ensure life-long neurogenesis in the mammalian brain. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (Fasn), the key enzyme of de novo lipogenesis, is highly active in adult NSPCs and that conditional deletion of Fasn in mouse NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene previously implicated in lipid metabolism, that we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA, which is an essential substrate for Fasn to fuel lipogenesis. Thus, we identify here a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587167/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587167/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knobloch, Marlen -- Braun, Simon M G -- Zurkirchen, Luis -- von Schoultz, Carolin -- Zamboni, Nicola -- Arauzo-Bravo, Marcos J -- Kovacs, Werner J -- Karalay, Ozlem -- Suter, Ueli -- Machado, Raquel A C -- Roccio, Marta -- Lutolf, Matthias P -- Semenkovich, Clay F -- Jessberger, Sebastian -- P30 DK020579/DK/NIDDK NIH HHS/ -- R01 DK076729/DK/NIDDK NIH HHS/ -- R01 DK088083/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Jan 10;493(7431):226-30. doi: 10.1038/nature11689. Epub 2012 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brain Research Institute, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201681" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/cytology/*metabolism ; Animals ; Cell Proliferation ; Dentate Gyrus/metabolism ; Fatty Acid Synthases/deficiency/genetics/*metabolism ; Gene Expression Profiling ; Hippocampus/cytology/metabolism ; *Lipogenesis ; Malonyl Coenzyme A/metabolism ; Mice ; Mice, Transgenic ; Neural Stem Cells/cytology/*metabolism ; Neurogenesis ; Nuclear Proteins/genetics/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-06-26
    Description: Conrad et al. have generated human adult germline stem cells (haGSCs) from human testicular tissue, which they claim have similar pluripotent properties to human embryonic stem cells (hESCs). Here we investigate the pluripotency of haGSCs by using global gene-expression analysis based on their gene array data and comparing the expression of pluripotency marker genes in haGSCs and hESCs, and in haGSCs and human fibroblast samples derived from different laboratories, including our own. We find that haGSCs and fibroblasts have a similar gene-expression profile, but that haGSCs and hESCs do not. The pluripotency of Conrad and colleagues' haGSCs is therefore called into question.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ko, Kinarm -- Arauzo-Bravo, Marcos J -- Tapia, Natalia -- Kim, Julee -- Lin, Qiong -- Bernemann, Christof -- Han, Dong Wook -- Gentile, Luca -- Reinhardt, Peter -- Greber, Boris -- Schneider, Rebekka K -- Kliesch, Sabine -- Zenke, Martin -- Scholer, Hans R -- England -- Nature. 2010 Jun 24;465(7301):E1; discussion E3. doi: 10.1038/nature09089.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Munster 48149, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577160" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Biomarkers/analysis ; Biopsy ; Cells, Cultured ; Embryonic Stem Cells/cytology/metabolism ; Fibroblasts/cytology/metabolism ; Gene Expression Profiling ; Germ Cells/*cytology ; Humans ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Male ; Mice ; RNA, Messenger/analysis/genetics ; Reproducibility of Results ; Testis/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...