ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-09-24
    Description: Aneuploidies are common chromosomal defects that result in growth and developmental deficits and high levels of lethality in humans. To gain insight into the biology of aneuploidies, we manipulated mouse embryonic stem cells and generated a trans-species aneuploid mouse line that stably transmits a freely segregating, almost complete human chromosome 21 (Hsa21). This "transchromosomic" mouse line, Tc1, is a model of trisomy 21, which manifests as Down syndrome (DS) in humans, and has phenotypic alterations in behavior, synaptic plasticity, cerebellar neuronal number, heart development, and mandible size that relate to human DS. Transchromosomic mouse lines such as Tc1 may represent useful genetic tools for dissecting other human aneuploidies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1378183/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1378183/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Doherty, Aideen -- Ruf, Sandra -- Mulligan, Claire -- Hildreth, Victoria -- Errington, Mick L -- Cooke, Sam -- Sesay, Abdul -- Modino, Sonie -- Vanes, Lesley -- Hernandez, Diana -- Linehan, Jacqueline M -- Sharpe, Paul T -- Brandner, Sebastian -- Bliss, Timothy V P -- Henderson, Deborah J -- Nizetic, Dean -- Tybulewicz, Victor L J -- Fisher, Elizabeth M C -- 076700/Wellcome Trust/United Kingdom -- MC_U117512674/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Sep 23;309(5743):2033-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16179473" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Animals ; Behavior, Animal ; Brain/pathology ; Cell Count ; Cell Line ; Chimera ; *Chromosomes, Human, Pair 21 ; *Disease Models, Animal ; *Down Syndrome/genetics/physiopathology ; Embryo, Mammalian/cytology ; Facial Bones/pathology ; Female ; Gene Expression ; *Genetic Engineering ; Genetic Markers ; Heart Defects, Congenital/embryology ; Hippocampus/physiopathology ; Humans ; Long-Term Potentiation ; Lymphocyte Activation ; Male ; Maze Learning ; Memory ; Mice ; Mice, Inbred Strains ; *Mice, Transgenic ; Neurons/cytology ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Skull/pathology ; Stem Cells ; Synaptic Transmission ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-02
    Description: The generation of pluripotent stem cells from an individual patient would enable the large-scale production of the cell types affected by that patient's disease. These cells could in turn be used for disease modeling, drug discovery, and eventually autologous cell replacement therapies. Although recent studies have demonstrated the reprogramming of human fibroblasts to a pluripotent state, it remains unclear whether these induced pluripotent stem (iPS) cells can be produced directly from elderly patients with chronic disease. We have generated iPS cells from an 82-year-old woman diagnosed with a familial form of amyotrophic lateral sclerosis (ALS). These patient-specific iPS cells possess properties of embryonic stem cells and were successfully directed to differentiate into motor neurons, the cell type destroyed in ALS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dimos, John T -- Rodolfa, Kit T -- Niakan, Kathy K -- Weisenthal, Laurin M -- Mitsumoto, Hiroshi -- Chung, Wendy -- Croft, Gist F -- Saphier, Genevieve -- Leibel, Rudy -- Goland, Robin -- Wichterle, Hynek -- Henderson, Christopher E -- Eggan, Kevin -- New York, N.Y. -- Science. 2008 Aug 29;321(5893):1218-21. doi: 10.1126/science.1158799. Epub 2008 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Stem Cell Institute, Stowers Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669821" target="_blank"〉PubMed〈/a〉
    Keywords: Aged, 80 and over ; Amyotrophic Lateral Sclerosis/genetics/*pathology/physiopathology ; *Cell Differentiation ; Cell Line ; *Cellular Reprogramming ; Embryonic Stem Cells/cytology ; Female ; Fibroblasts/*cytology ; Gene Expression ; Humans ; Motor Neurons/*cytology/metabolism ; Neuroglia/cytology ; Pluripotent Stem Cells/*cytology ; Retroviridae/genetics ; Spinal Cord/cytology ; Superoxide Dismutase/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...