ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Aromatic compounds ; Benzoic acid ; 2-Aminobenzoate ; Anthranilic acid ; Acyl CoA Synthetases ; Monooxygenase ; 2-Aminobenzoyl CoA reductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The initial reactions possibly involved in the acrobic and anaerobic metabolism of aromatic acids by a denitrifying Pseudomonas strain were studied. Several acyl CoA synthetases were found supporting the view that activation of several aromatic acids preceeds degradation. A benzoyl CoA synthetase activity (AMP forming) (apparent K m values of the enzyme from nitrate grown cells: 0.01 mM benzoate, 0.2 mM ATP, 0.2 mM coenzyme A) was present in aerobically grown and anaerobically, nitrate grown cells when benzoate or other aromatic acids were present. In addition to benzoate and fluorobenzoates, also 2-amino-benzoate was activated, albeit with unfavorable K m (0.5 mM 2-aminobenzoate). A 2-aminobenzoyl CoA synthetase (AMP forming) was induced both aerobically and anaerobically with 2-aminobenzoate as growth substrate which had a similar substrate spectrum but a low K m for 2-aminobenzoate (〈0.02 mM). Anaerobic growth on 4-hydroxybenzoate induced a 4-hydroxybenzoyl CoA synthetase, and cyclohexanecarboxylate induced another synthetase. In contrast, 3-hydroxybenzoate and phenyl-acetate grown anaerobic cells appeared not to activate the respective substrates at sufficient rates. Contrary to an earlier report extracts from aerobic and anaerobic 2-aminobenzoate grown cells catalysed a 2-aminobenzoyl CoA-dependent NADH oxidation. This activity was 10–20 times higher in aerobic cells and appeared to be induced by 2-aminobenzoate and oxygen. In vitro, 2-aminobenzoyl CoA reduction was dependent on 2-aminobenzoyl CoA NAD(P)H, and oxygen. A novel mechanism of aerobic 2-aminobenzoate degradation is suggested, which proceeds via 2-aminobenzoyl CoA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1536
    Keywords: Gelatin ; hexadecyl- and dodecyl-ammonium bromide ; circular dichroism ; gelatin triple helical structure ; influence of temperature ; pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The interaction between cationic surfactants (hexadecyl and dodecyl trimethyl ammonium bromide) and gelatin was characterized by measuring the circular dichroism. The interaction between the cationic surfactants and gelatin is weak in comparison to that of anionic surfactants. When the concentration of cationic surfactants is sufficiently low, refolding of the gelatin-strands to the triple helical structure by rechilling the solution from 298 K to 283 K is complete. The triple helical content of the solution is affected more strongly by the cationic surfactants in acidic solution than at pHs 7 or 10. The interaction depends on the apolar group of the surfactant and is found to be stronger for DTAB than for CTAB at 298 K. Coagulation of the hydrophobic gelatin-cationic surfactant complexes does not comprise that pan of gelatin which is able to refold the triple helical structure. Therefore, the gelatin-strands of lower molecular weights are thought to react favorably with the surfactant ions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...