ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Key words Smooth muscle ; Pacemaker cells Interstitial cells of Cajal ; Gastrointestinal motility ; c-kit ; Spontaneous contraction ; Colon ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Antiperistalses occur from the flexure region of the guinea pig colon. We previously demonstrated that the circular muscle at the mesenteric border of the flexure region produced spontaneous regular contractions and found special smooth muscle cells believed to be pacemakers along the submucosal surface of the circular muscle layer. In this study, we revealed bipolar- and multipolar-type special smooth muscle cells along the submucosal surface of the muscle layer. Their slender cell processes contacted each other and formed a cellular network. Caveolae, filament structures expressing smooth muscle actin, vimentin, some desmin, and basal lamina were prominent features. The special smooth muscle cells corresponded to c-Kit-immunopositive cells and so-called interstitial cells or interstitial cells of Cajal in other reports. Their population was larger in the flexure region and the proximal colon than in the distal colon. The circular muscle layer at the flexure region was thicker than in other regions. The contraction in the flexure region showed the highest frequency and regularity. The dense population of special smooth muscle cells at the flexure region and thicker muscle layer may make the mechanical contraction more regular. The antiperistalsis from the flexure region could be explained in relation to the highest frequency of the pulsating contraction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Gastrointestinal motility ; Enteric nervous system ; Smooth muscle ; Rhythmicity ; Proto-oncogene ; Tyrosine kinase ; Interstitial cells of Cajal ; Mouse (BALB/c)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract In vivo injection of a neutralizing, monoclonal antibody (ACK2) to the receptor tyrosine kinase (c-kit) disrupts the normal motility patterns of the mouse small intestine. Immunohistochemical studies showed that cells expressing c-kit-like immunoreactivity (c-kit-LI) decreased in numbers in response to ACK2, but the identity of these cells is unknown. We investigated the identity and development of the cells that express c-kit-LI in the mouse small intestine and colon. Cells in the region of the myenteric plexus and deep muscular plexus of the small intestine and in the subserosa, in the myenteric plexus region, within the circular and longitudinal muscle layers, and along the submucosal surface of the circular muscle in the colon were labeled with ACK2. The distribution of cells that express c-kit-LI was the same as that of interstitial cells (ICs). In whole-mount preparations cells with c-kit-LI were interconnected, forming a netword similar to the network formed by cells that stained with methylene blue, which has been used as a marker for ICs in the mouse gastrointestinal tract. Immunocytochemistry verified that ICs were labeled with ACK2. Multiple injections of animals with ACK2 between days 0 and 8 post partum (pp) caused a dramatic reduction in the number of ICs compared to control animals. From an ultrastructural point of view, the proliferation and development appeared to be suppressed in some classes of ICs, while others displayed an altered course of development. Functional studies showed that the decrease in ICs was accompanied by a loss of electrical rhythmicity in the small intestine and reduced neural responses in the small bowel and colon. Morphological experiments showed that c-kit-positive cells are ICs, and physiological evidence reinforced the concept that ICs are involved in generation of rhythmicity and translation of neural inputs in gastrointestinal smooth muscles. Controlling the development of ICs provides a powerful new tool for the investigation of the physiological role of these cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...