ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 11 (1996), S. 121-141 
    ISSN: 1573-269X
    Keywords: d'Alembert principle ; reduced multibody method ; constrained flexibility ; nonlinear vibration ; Galerkin's method ; checking function ; differential and algebraic equations (DAE) ; bifurcation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The nonlinear response characteristics for a dynamic system with a geometric nonlinearity is examined using a multibody dynamics method. The planar system is an initially straight clamped-clamped beam subject to high frequency excitation in the vicinity of its third natural mode. The model includes a pre-applied static axial load, linear bending stiffness and a cubic in-plane stretching force. Constrained flexibility is applied to a multibody method that lumps the beam into N elements for three substructures subjected to the nonlinear partial differential equation of motion and N-1 linear modal constraints. This procedure is verified by d'Alembert's principle and leads to a discrete form of Galerkin's method. A finite difference scheme models the elastic forces. The beam is tuned by the axial force to obtain fourth order internal resonance that demonstrates bimodal and trimodal responses in agreement with low and moderate excitation test results. The continuous Galerkin method is shown to generate results conflicting with the test and multibody method. A new checking function based on Gauss' principle of least constraint is applied to the beam to minimize modal constraint error.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...