ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)  (1)
  • associative memory  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 76 (1993), S. 207-223 
    ISSN: 1573-2878
    Keywords: Parameter identification ; nonlinear mechanical and structural systems ; associative memory ; adaptive training ; recursive memory matrix
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper presents a new method for identification of parameters in nonlinear structural and mechanical systems in which the initial guesses of the unknown parameter vectors may be far from their true values. The method uses notions from the field of artificial neural nets and, using an initial set of training parameter vectors, generates in an adaptive fashion other relevant training vectors to yield identification of the parameter vector in a recursive fashion. The simplicity and power of the technique are illustrated by considering three highly nonlinear systems. It is shown that the technique presented here yields excellent estimates with only a limited amount of response data, even when each element of the set comprising the initial training parameter vectors is far from its true value—in fact, sufficiently far that the usual recursive identification schemes fail to converge.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A nonparametric identification technique for the identification of close coupled dynamic systems with arbitrary memoryless nonlinearities is presented. The method utilizes noisy recorded data (acceleration, velocity and displacement) to identify the restoring forces in the system. The masses in the system are assumed to be known (or fairly well estimated from the design drawings). The restoring forces are expanded in a series of orthogonal polnomials and the coefficients of these polynomial expansions are obtained by using least square fit method. A particularly simple and computationally efficient method is proposed for dealing with separable restoring forces. The identified results are found to be relatively insensitive to measurement noise. An analysis of the effects of measurement noise on the quality of the estimates is given. The computations are shown to be relatively quick (when compared say to the Wiener identification method) and the core storage required relatively small, making the method suitable for onboard identification of large space structures.
    Keywords: GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)
    Type: NASA-CR-164948 , JPL-PUB-81-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...