ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0173-0835
    Keywords: Glycoproteins ; Capillary electrophoresis ; Glanzmann's thrombasthenia ; Platelet membrane ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Glanzmann thrombasthenia (GT) is an inherited hemorrhagic defect due to a failure of the platelet membrane glycoprotein (GP) IIb-IIIa complex. Capillary electrophoresis (CE) analysis of solubilized platelet membranes from normal individuals showed the presence of two peaks with a migration time of 27 and 29 min, respectively. An excellent run-to-run and day-to-day reproducibility of the technique (〈 1% variation of the retention time) was documented. Using an automated Ferguson method, the apparent molecular masses were 100.0 kDa and 138.5 kDa, respectively. Immunoprecipitation with monoclonal antibodies anti-GP IIIa (B59.2.1) and anti-IIb (61.9.1.3) showed the two peaks as IIIa and IIb, respectively. Electropherograms of a GT young man showed the lack of both peaks. Less than 50% of each peak was present in his parents. Polyacrylamide gel electrophoresis (PAGE), immunoblotting, and flow cytometry analyses showed that GP IIb and IIIa were undetectable in the platelet membranes from the propositus, half of the normal amount being present in both parents. These findings indicate CE to be a rapid, sensitive and reliable tool to investigate patients with abnormalities of the GP IIb-IIIa complex.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0263-6484
    Keywords: Hypertonic stress ; EUE cells ; SDS-PAGE ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A cell line derived from human embryonic epithelium (EUE cells) shows an enhanced expression of a 33 kDa protein when adapted to grow in a hypertonic medium containing 0·246 M NaCl (1·8 × the isotonic concentration). The maximum amount of this protein, followed by SDS-PAGE electrophoresis, was found after 4 days of adaptation; thereafter, the protein band remained fairly constant up to 30 days. When the cells were transferred back to a medium containing 0·137 M NaCl (isotonic medium), the protein pattern reverted to that of control cells. This protein is mainly localized in the cytosol, although a small part is associated with the 150 000 g pellet and needs detergents to be extracted. The molecular weight and the cellular location suggest a possible analogy with the so-called amphitropic proteins, that are known to interact with both the epidermal growth factor receptor and hydrophobic structures, such as the membrane phospholipids and the cytoskeletal components.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We present the first GPS estimate of crustal extension in the central Apennines (Italy) through the analysis of the deformation of a sub-network of the National GPS Geodetic network IGM95 in the interval 1994–1999. The selected sub-network spans the entire active deformation belt perpendicularly to its axis and allows the evaluation of (1) the total extension rate absorbed in this sector of the Apennines and (2) the seismogenic potential of the normal faults active in the Late Pleistocene-Holocene interval within the network. Results of this reoccupation are consistent with an extensional strain rate of 0.18×10−6 yr−1 concentrated in an area of about 35 km width, giving an average extension rate of 6±2 mm/yr across the central Apennines. The pattern of active deformation suggests active elastic strain accumulation on the westernmost of the two fault systems active in the Late Pleistocene-Holocene interval and may also suggest the presence of another active fault system not recognized so far.
    Description: Published
    Description: 2121-2124
    Description: reserved
    Keywords: GPS ; Apennines, Active extension ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 211231 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw=5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9×1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km×15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike=266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Adriatic block from the northern one.
    Description: Published
    Description: 21-35
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; molise earthquake ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1535914 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-06
    Description: On 18 January 2017, the 2016–2017 central Italy seismic sequence reached the Campotosto area with four events with magnitude larger than 5 in three hours (major event MW 5.5). To study the slip behavior on the causative fault/faults we followed two different methodologies: (1) we use Interferometric Synthetic Aperture Radar (InSAR) interferograms (Sentinel-1 satellites) and Global Positioning System (GPS) coseismic displacements to constrain the fault geometry and the cumulative slip distribution; (2) we invert near-source strong-motion, high-sampling-rate GPS waveforms, and high-rate GPS-derived static offsets to retrieve the rupture history of the two largest events. The geodetic inversion shows that the earthquake sequence occurred along the southern segment of the SW-dipping Mts. Laga normal fault system with an average slip of about 40 cm and an estimated cumulative geodetic moment of 9.29 × 1017 Nm (equivalent to a MW~6). This latter estimate is larger than the cumulative seismic moment of all the events, with MW 〉 4 which occurred in the corresponding time interval, suggesting that a fraction (~35%) of the overall deformation imaged by InSAR and GPS may have been released aseismically. Geodetic and seismological data agree with the geological information pointing out the Campotosto fault segment as the causative structure of the main shocks. The position of the hypocenters supports the evidence of an up-dip and northwestward rupture directivity during the major shocks of the sequence for both static and kinematic inferred slip models. The activated two main slip patches are characterized by rise time and peak slip velocity in the ranges 0.7–1.1 s and 2.3–3.2 km/s, respectively, and by ~35–50 cm of slip mainly concentrated in the shallower northern part of causative fault. Our results show that shallow slip (depth 〈 5 km) is required by the geodetic and seismological observations and that the inferred slip distribution is complementary with respect to the previous April 2009 seismic sequence affecting the southern half of the Campotosto fault. The recent moderate strain-release episodes (multiple M~5–5.5 earthquakes) and the paleoseismological evidence of surface-rupturing events (M~6.5) suggests therefore a heterogeneous behavior of the Campotosto fault.
    Description: Published
    Description: id 1482
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: central Italy ; Slip behavior of Campotosto Fault ; InSAR ; Sentinel-1 ; GPS ; high-rate GPS ; strong-motion ; normal faulting earthquake ; continental tectonic ; source modeling ; kinematic inversion ; seismic cycle ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...