ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Chemistry 173 (2015): 125-135, doi:10.1016/j.marchem.2014.09.002.
    Description: The size partitioning of dissolved iron and organic iron-binding ligands into soluble and colloidal phases was investigated in the upper 150 m of two stations along the GA03 U.S. GEOTRACES North Atlantic transect. The size fractionation was completed using cross-flow filtration methods, followed by analysis by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS) for iron and competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) for iron-binding ligands. On average, 80% of the 0.1-0.65 nM dissolved iron (〈0.2 μm) was partitioned into the colloidal iron (cFe) size fraction (10 kDa 〈 cFe 〈 0.2 μm), as expected for areas of the ocean underlying a dust plume. The 1.3-2.0 nM strong organic iron-binding ligands, however, overwhelmingly (75-77%) fell into the soluble size fraction (〈10 kDa). As a result, modeling the dissolved iron size fractionation at equilibrium using the observed ligand partitioning did not accurately predict the iron partitioning into colloidal and soluble pools. This suggests that either a portion of colloidal ligands are missed by current electrochemical methods because they react with iron more slowly than the equilibration time of our CLE-ACSV method, or part of the observed colloidal iron is actually inorganic in composition and thus cannot be predicted by our model of unbound iron-binding ligands. This potentially contradicts the prevailing view that greater than 99% of dissolved iron in the ocean is organically complexed. Untangling the chemical form of iron in the upper ocean has important implications for surface ocean biogeochemistry and may affect iron uptake by phytoplankton.
    Description: J.N. Fitzsimmons was funded by a National Science Foundation Graduate Research Fellowship (NSF Award #0645960). Research funding was provided by the National Science Foundation (OCE #0926204 and OCE #0926197) and the Center for Microbial Oceanography: Research and Education (NSF-OIA Award #EF-0424599) to E.A. Boyle. R.M. Bundy was partially funded by NSF OCE-0550302 and NSF OCE-1233733 to K.A. Barbeau and an NSF-GK12 graduate fellowship.
    Keywords: Iron ; Iron ligands ; CLE-ACSV ; Colloids ; Ultrafiltration ; Trace metals ; GEOTRACES ; North Atlantic Ocean ; Chemical oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 3 (2016): 243, doi:10.3389/fmars.2016.00243.
    Description: Organic ligands form strong complexes with many trace elements in seawater. Various metals can compete for the same ligand chelation sites, and the final speciation of bound metals is determined by relative binding affinities, concentrations of binding sites, uncomplexed metal concentrations, and association/dissociation kinetics. Different ligands have a wide range of metal affinities and specificities. However, the chemical composition of these ligands in the marine environment remains poorly constrained, which has hindered progress in modeling marine metal speciation. In this study, we detected and characterized natural ligands that bind copper (Cu) and nickel (Ni) in the eastern South Pacific Ocean with liquid chromatography tandem inductively coupled plasma mass spectrometry (LC-ICPMS), and high-resolution electrospray ionization mass spectrometry (ESIMS). Dissolved Cu, Ni, and ligand concentrations were highest near the coast. Chromatographically unresolved polar compounds dominated ligands isolated near the coast by solid phase extraction. Offshore, metal and ligand concentrations decreased, but several new ligands appeared. One major ligand was detected that bound both Cu2+ and Ni2+. Based on accurate mass and fragmentation measurements, this compound has a molecular formula of [C20H21N4O8S2+M]+ (M = metal isotope) and contains several azole-like metal binding groups. Additional lipophilic Ni complexes were also present only in oligotrophic waters, with masses of 649, 698, and 712 m/z (corresponding to the 58Ni metal complex). Molecular formulae of [C32H54N3O6S2Ni]+ and [C33H56N3O6S2Ni]+ were determined for two of these compounds. Addition of Cu and Ni to the samples also revealed the presence of additional compounds that can bind both Ni and Cu. Although these specific compounds represent a small fraction of the total dissolved Cu and Ni pool, they highlight the compositional diversity and spatial heterogeneity of marine Ni and Cu ligands, as well as variability in the extent to which different metals in the same environment compete for ligand binding.
    Description: Support was provided by the National Science Foundation (NSF) program in Chemical Oceanography (OCE-1356747, OCE-1233261, OCE-1233733, OCE-1233502, and OCE-1237034), the NSF Science and Technology Center for Microbial Oceanography Research and Education (C-MORE; DBI-0424599), the Gordon and Betty Moore Foundation (#3298 and 3934), and the Simons Foundation (#329108, DR).
    Keywords: Copper ; Nickel ; Marine ligands ; Metal competition ; GEOTRACES ; Eastern Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...