ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOSCIENCES (GENERAL)  (4)
  • 1980-1984  (4)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-18
    Description: The results of a computerized simulation of the potential global environmental effects of dust and smoke clouds that would be generated by a nuclear war are presented. Short term effects of blast, fire, and radiation are neglected in the series of physical models that include a nuclear war scenario, a particle microphysics model, and a radiative convective model. Account is taken of the altitude-dependent dust, smoke, radioactivity, and NO(x) injections, the temporal evolution of dust and smoke clouds, land and ocean environments, and temperature contrasts. A nuclear exchange would produce thousands of individual smoke and dust clouds rising up to 30 km altitude in the midlatitudes. The smoke, dust, and radioactive debris would cover the entire midlatitudes within 1-2 weeks. The smoke would arise from conflagrations of forests, suburbs, and urban areas. Obscuration of sunlight would induce subfreezing temperatures for several months, disruption of the global circulation patterns, and the arrival of a nuclear winter, followed and accompanied by radioactive fallout, pyrogenic air pollution, and UV-B flux enhancements. It is estimated that a total of only 100 Mtons would be sufficient to plunge the Northern Hemisphere summer to subfreezing temperatures lasting months. Since the probable exchange in a nuclear war would exceed 5000 Mtons, it is expected that many species, including humans, may not survive the war.
    Keywords: GEOSCIENCES (GENERAL)
    Type: Science (ISSN 0036-8075); 222; 1283-129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-18
    Description: A model of the evolution and radiative effects of a debris cloud from a hypothesized impact event at the Cretaceous-Tertiary boundary suggests that the cloud could have reduced the amount of light at the earth's surface below that required for photosynthesis for several months and, for a somewhat shorter interval, even below that needed for many animals to see. For 6 months to 1 year, the surface would cool; the oceans could cool only a few degrees Celsius at most, but the continents might cool a maximum of 40 Kelvin. Extinctions in the ocean may have been caused primarily by the temporary cessation of photosynthesis, but those on land may have been primarily induced by a combination of lowered temperatures and reduced light.
    Keywords: GEOSCIENCES (GENERAL)
    Type: Science; 219; Jan. 21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-18
    Description: The effects of various US-USSR nuclear-exchange scenarios on global climate are investigated by means of computer simulations, summarizing the results of Turco et al. (1983) and follow-up studies using 3D global-circulation models. A nuclear-scenario model is used to determine the amounts of dust, smoke, radioactivity, and pyrotoxins generated by a particular type of nuclear exchange (such as a general 5,000-Mt exchange, a 1,000-Mt limited exchange, a 5,000-Mt hard-target counterforce attack, and a 100-Mt attack on cities only): a particle-microphysics model predicts the evolution of the dust and smoke particles; and a radiative-convective climate model estimates the effects of the dust and smoke clouds on the global radiation budget. The findings are presented in graphs, diagrams, and a table. Thick clouds blocking most sunlight over the Northern Hemisphere midlatitudes for weeks or months and producing ground-temperature reductions of 20-40 C, disruption of global circulation patterns, and rapid spread of clouds to the Southern Hemisphere are among the 'nuclear-winter' effects predicted for the 5,000-Mt baseline case. The catastrophic consequences for plant, animal, and human populations are considered, and the revision of superpower nuclear strategies is urged.
    Keywords: GEOSCIENCES (GENERAL)
    Type: Scientific American (ISSN 0036-8733); 251; 33-43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-18
    Description: A simulation is carried out of the evolution of an optically thick dust cloud in the earth's atmosphere, and calculations are made of the effects that such a dust cloud would have on the amount of visible light reaching the surface and the temperature at the earth's surface. It is found that large quantities of dust remain in the atmosphere for periods of only three to six months. This duration is fixed by the physical processes of coagulation; these cause the rapid formation of micron-sized particles and sedimentation that quickly removes the particles from the atmosphere. The duration of the event is found to be nearly independent of the initial altitude, initial particle size, initial mass, atmospheric vertical diffusive mixing rate, and rainout rate. It depends to a slight extent on the particle density and the probability that colliding particles stick together to form a larger particle. In addition, the duration is limited by the rate at which the debris spreads from the initial impact site. A doubling code is used to calculate the visible radiative transfer in the dust clouds. It is found that light levels are too low for vision for one to six months and too low for photosynthesis for two months to one year.
    Keywords: GEOSCIENCES (GENERAL)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...