ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: A radiation model, together with National Meteorological Center temperature observations, was used to compute daily net heating rates in the northern hemisphere (NH) for the Arctic late fall and winter periods of both 1988-1989 and 1991-1992 and in the southern hemisphere (SH) for the Antarctic fall and winters of 1987 and 1992. The heating rates were interpolated to potential temperature (theta) surfaces between 400 K and 2000 K and averaged within the polar vortex, the boundary of which was determined by the maximum gradient in potential vorticity. The averaged heating rates were used in a one-dimensional vortex interior descent model to compute the change in potential temperature with time of air parcels initialized at various theta values, as well as to compute the descent in log pressure coodinates. In the NH vortex, air parcels which were initialized at 18 km on November 1, descended about 6 km by March 21, while air initially at 25 km descended 9 km in the same time period. this represents an average descent rate in the lower stratosphere of 1.3 to 2 km per month. Air initialized at 50 km descended 27 km between November 1 and March 21. In the SH vortex, parcels initialized at 18 km on March 1, descended 3 km, while air at 25 km descended 5-7 km by the end of October. This is equivalent to an average descent in the lower stratosphere of 0.4 to 0.9 km per month during this 8-month period. Air initialized at 52 km descended 26-29 km between March 1 and October 31. In both the NH and the SH, computed descent rates increased markedly with height. The descent for the NH winter of 1992-1993 and the SH winter of 1992 computed with a three-dimensional trajectory model using the same radiation code was within 1 to 2 km of that calculated by the one-dimensional model, thus validating the vortex averaging procedure. The computed descent rates generally agree well with observations of long-lived tracers, thus validating the radiative transfer model.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D8; p. 16,677-16,689
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: An observationally based, mechanistic dynamical model is used to simulate the decline of total ozone during September and October for the years 1979 through 1986. Vertical velocities derived from observed stratospheric temperature changes and computed radiative heating rates are used to advect an ozone mixing ratio profile during the Antarctic spring period. An early August 1982 Syowa balloonsonde ozone profile is used to initialize the computations. The model reasonably simulates the September and October changes in total ozone, considering the uncertainties in the observed data and the radiative heating. The simulated decline is found to be very sensitive to the choice of initial ozone profile and to small changes in the radiative heating. The results of this study suggest that the dynamical hypothesis of the Antarctic ozone depletion is both quantitatively credible and consistent with the observed temperature changes.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 93; 3833-384
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: A radiative transfer model and observed temperature and ozone profiles are used to compute three-dimensional fields of heating rates for the Northern Hemisphere during 1989 Airborne Arctic Stratospheric Experiment. For a clear atmosphere, an average cooling of 0.2 to 0.4 K/day is computed in the regions of the ER-2 aircraft during flight days. Tropospheric clouds will increase the cooling by 0.1 to 0.2 K/day. These cooling rates are in good agreement with the diabatic cooling estimated from N2O data, Net heating rather than cooling is computed in the area of the ozone 'minihole' which had its maximum on 1/31/89 and 2/1/89 in the vicinity of the mission. On 1/31/89 the 50 and 30 mb net heating rates are 0.1 to 0.2 K/day for clear skies, and 0.05 to 0.1 K/day for cloudy skies.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters, Supplement (ISSN 0094-8276); 17; 345-348
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: Values of the monthly mean heating rates and the residual circulation characteristics were calculated using NMC data for temperature and the solar backscattered UV ozone for the period between 1979 and 1986. The results were used in a two-dimensional photochemical model in order to examine the effects of temperature and residual circulation on the interannual variability of ozone. It was found that the calculated total ozone was more sensitive to variations in interannual residual circulation than in the interannual temperature. The magnitude of the modeled ozone variability was found to be similar to the observed variability, but the observed and modeled year-to-year deviations were, for the most part, uncorrelated, due to the fact that the model did not account for most of the QBO forcing and for some of the observed tropospheric changes.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 96; 5073-507
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: Trend analysis of the Airborne Arctic Stratospheric Expedition's ER-2 profile data reveals an average decrease in N2O on potential temperature isentropes which can be attributed to diabatic cooling of inner vortex air. This conclusion is independently supported by radiative transfer computations. Trends in ozone and water vapor over the same period are not consistent with the magnitude of the diabatic descent. After accounting for the diabatic motion (estimated from N2O), an additional 0.44 + or - 0.3 percent/day average anomalous O3 decrease above 440 K (about 20 km) is needed to balance the continuity equation. This ozone decrease suggests additional photochemical destruction of ozone in the presence of the high amounts of ClO observed during the mission. A 0.4 + or - 0.3 percent/day average anomalous increase in H2O is also observed near 420 K (about 18 km) which may be due to the evaporation of ice crystals falling from higher, colder stratospheric layers.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters, Supplement (ISSN 0094-8276); 17; 469-472
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: Horizontal mixing coefficients K(yy) and K(yz) were computed using potential vorticity and gradients calculated from NMC data for geopotential heights and temperatures. It was found that the mid-latitude to polar mixing coefficients depend on the use of nongeostrophic winds, which yield K(yy) values which are mostly positive, whereas geostophic winds yield K(yy) values which were largely negative near the polar region. A comparison of the K(yy) values calculated from the potential vorticity fluxes and gradients with the K(yy) values calculated using the momentum balance between the flux of potential vorticity and the residual circulation has shown that the residual-circulation-balanced K(yy) values in the upper stratosphere were much larger than the values calculated by the present method. It is suggested that this difference is the result of breaking gravity waves in the upper stratosphere and lower mesosphere.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 93; 5221-524
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Providing real time constituent data analysis and potential vorticity computations in support of the Airborne Arctic Stratospheric Experiment (AASE) is discussed. National Meteorological Center (NMC) meteorological data and potential vorticity computations derived from NMC data are projected onto aircraft coordinates and provided to the investigators in real time. Balloon and satellite constituent data are composited into modified Lagrangian mean coordinates. Various measurements are intercompared, trends deduced and reconstructions of constituent fields performed.
    Keywords: GEOPHYSICS
    Type: NASA, Washington, NASA Upper Atmosphere Research Program: Research Summaries 1988-1989; p 244-245
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).
    Keywords: GEOPHYSICS
    Type: NASA, Washington, NASA Upper Atmosphere Research Program: Research Summaries 1988-1989; p 224-227
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Radiative transit computations of heating rates utilizing data from the 1987 Airborne Antarctic Ozone Experiment (AAOE) (Tuck et al., 1989) and the 1989 Airborne Arctic Stratospheric Experiment (AASE) (Turco et al., 1990) are described. Observed temperature and ozone profiles and a radiative transfer model are used to compute the heating rates for the Southern Hemisphere during AAOE and the Northern Hemisphere during AASE. The AASE average cooling rates computed inside the vortex are in good agreement with the diabatic cooling rates estimated from the ER-2 profile data for N2O for the AASE period (Schoeberl et al., 1989).
    Keywords: GEOPHYSICS
    Type: Conference on Atmospheric Radiation; Jul 23, 1990 - Jul 27, 1990; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...