ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.
    Keywords: GEOPHYSICS
    Type: Soil Science Society of America, Journal (ISSN 0038-0776); 53; 211-219
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.
    Keywords: GEOPHYSICS
    Type: Soil Science Society of America, Journal (ISSN 0038-0776); 53; 158-164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The Peninsular Gneisses of Southern India developed over a period of several hundred Ma in the middle-to-late Archaean. Gneisses in the Gorur-Hassan area of southern Karnataka are the oldest recognized constituents: Beckinsale et al. reported a preliminary Rb-Sr whole-rock isochron age of 33558 + or - 66 Ma, but further Rb-Sr and Pb/Pb whole-rock isochron determinations indicate a slightly younger, though more precise age of ca 3305 Ma (R. D. Beckinsale, Pers. Comm.). It is well established that the Peninsular Gneisses constitute basement on which the Dharwar schist belts were deposited. Well-documented exposures of unconformities, with basal quartz pebble conglomerates of the Dharwar Supergroup overlying Peninsular Gneisses, have been reported from the Chikmagalur and Chitradurga areas, and basement gneisses in these two areas have been dated by Rb-Sr and Pb/Pb whole-rock isochron methods at ca 3150 Ma and ca 3000 Ma respectively. Dharwar supracrustal rocks of the Chitradurga schist belt are intruded by the Chitradurga Granite, dated by a Pb/Pb whole-rock isochron at 2605 + or - 18 Ma. These results indicate that the Dharwar Supergroup in the Chitradurga belt was deposited between 3000 Ma and 2600 Ma.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Workshop on the Deep Continental Crust of South India; p 181-183
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-14
    Description: Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.
    Keywords: GEOPHYSICS
    Type: Science (ISSN 0036-8075); 255; 695-702
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Mass-balance interpretation of a soil chronosequence provides a means of quantifying elemental addition, removal, and transformation that occur in soils from a flight of marine terraces in northern California. Six soil profiles that range in age from several to 240,000 yr are developed in unconsolidated, sandy-marine, and eolian parent material deposited on bedrock marine platforms. Soil evolution is dominated by (1) open-system depletion of Si, Ca, Mg, K, and Na; (2) open-system enrichment of P in surface soil horizons; (3) relative immobility of Fe and Al; and (4) transformation of Fe, Si, and Al in the parent material to secondary clay minerals and sesquioxides. Net mass losses of bases and Si are generally uniform with depth and substantial, in some cases approaching 100 percent; however, the rate of loss of each element differs markedly, causing the ranking of each by relative abundance to shift with time. Loss of Si from the sand fraction by dissolution and particle-size diminution, from about 100 percent to less than 35 percent over 240 ky, mirrors a similar gain in the silt and clay size fractions. The Fe originally present in the sand fraction decreases from greater than 80 percent to less than 10 percent, whereas the amount of Fe present in the clay and crystalline oxyhydroxide fractions increases to 25 percent and 70 percent, respectively.
    Keywords: GEOPHYSICS
    Type: Geological Society of America Bulletin (ISSN 0016-7606); p. 1456-1470.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A model is presented describing the factors and processes which determine the measured C-14 ages of soil calcium carbonate. Pedogenic carbonate forms in isotopic equilium with soil CO2. Carbon dioxide in soils is a mixture of CO2 derived from two biological sources: respiration by living plant roots and respiration of microorganisms decomposing soil humus. The relative proportion of these two CO2 sources can greatly affect the initial C-14 content of pedogenic carbonate: the greater the contribution of humus-derived CO2, the greater the initial C-14 age of the carbonate mineral. For any given mixture of CO2 sources, the steady-state (14)CO2 distribution vs. soil depth can be described by a production/diffusion model. As a soil ages, the C-14 age of soil humus increases, as does the steady-state C-14 age of soil CO2 and the initial C-14 age of any pedogenic carbonate which forms. The mean C-14 age of a complete pedogenic carbonate coating or nodule will underestimate the true age of the soil carbonate. This discrepancy increases the older a soil becomes. Partial removal of outer (and younger) carbonate coatings greatly improves the relationship between measured C-14 age and true age. Although the production/diffusion model qualitatively explains the C-14 age of pedogenic carbonate vs. soil depth in many soils, other factors, such as climate change, may contribute to the observed trends, particularily in soils older than the Holocene.
    Keywords: GEOPHYSICS
    Type: Earth and Planetary Science Letters (ISSN 0012-821X); 125; 4-Jan; p. 385-405
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...