ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-18
    Description: The earth albedo gamma radiation above 35 MeV in the equatorial region is investigated using observations from the second Small Astronomy Satellite. The zenith angle distribution of the gamma radiation has a peak toward the horizon which is about an order of magnitude more intense than the radiation coming from the nadir, and nearly two orders of magnitude more intense than the gamma radiation from most parts of the sky. The gamma radiation originating from the western horizon is a factor of four more intense than the radiation from the eastern horizon and a factor of three more intense than that from the northern and southern directions. This reflects the geomagnetic effects on the incident cosmic rays whose interactions produce the albedo gamma rays. The variation of the upcoming gamma ray intensity with vertical cutoff rigidity is consistent with the empirical relationship found by Gur'yan et al. (1979).
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research; 86; Mar. 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The Anti-Coincidence Detector (ACD), the outermost detector layer in the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT), is designed to detect and veto incident cosmic ray charged particles, which outnumber cosmic gamma rays by 3-4 orders of magnitude. The challenge in ACD design is that it must have high (0.9997) detection efficiency for singly-charged relativistic particles, but must also have a low probability for self-veto of high-energy gammas by backplash radiation from interactions in the LAT calorimeter. Simulations and tests demonstrate that the ACD meete its design requirements. The performance of the ACD has remained stable thrugh stand-alone environmental testing, shipment across the U.S. installation onto the LAT, shipment back across the U.S., LAT environmental testing, and shipment to Arizona. As part of the fully-assembled GLAST observatory, the ACD is being readied for final testing before launch.
    Keywords: Astronomy
    Type: AIP Conference Proceedings (The First GLAST Symposium) (ISSN 0094-243X); Volume 921; 588-589
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-10
    Description: This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT's first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of -8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-08-10
    Description: This paper describes the design and performance studies of the scintillator tile detectors for the Anti-Coincidence Detector (ACD) of the Large Area Telescope (LAT) on the Gamma ray Large Area Space Telescope (GLAST), scheduled for launch in early 2008. The scintillator tile detectors utilize wavelength shifting fibers and have dual photomultiplier tube (PMT) readout. The design requires highly efficient and uniform detection of singly charged relativistic particles over the tile area and must meet all requirements for a launch, as well as operation in a space environment. We present here the design of three basic types of tiles used in the ACD, ranging in size from approx.450 sq cm to approx.2500 sq cm, all 1 cm thick, with different shapes, and with photoelectron yield of approx. 20 photoelectrons per minimum ionizing particle (mip) at normal tile incidence, uniform over the tile area. Some tiles require flexible clear fiber cables up to 1.5 m long to deliver scintillator light to remotely located PMT.
    Keywords: Astronomy
    Type: Meeting held on Oct. 1-5, 2007 in Moscow, Russia. To appear in the Journal of Nuclear Instruments and Methods, Elsevier
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-27
    Description: ERTS-1 MSS data covering parts of Pennsylvania's southern and eastern middle anthracite coal fields were studied to determine how well accumulations of coal refuse could be identified and mapped by computer analysis and processing. Spectral signatures of coal refuse targets were similar to water, but had higher reflectances in all channels. Relative reflectances were in the order 4 5 or = 6 7. Although no underflight photography was at hand to judge mapping success, correlation was made, with 1:24,000 scale U.S.G.S. maps dated 1947 and 1948. Coal refuse targets correlated well with existing maps.
    Keywords: GEOPHYSICS
    Type: PAPER-L24 , NASA. Goddard Space Flight Center Symp. on Significant Results obtained from the ERTS-1, Vol. 1, Sect. A and B; p 1067-1074
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: As the water outgas of a space shuttle passes through the rarefied atmosphere at orbital altitude, collisions occur between the gases with sufficient energy to excite infrared-active water molecules to various vibrational and rotational states. An infrared contaminant model (IR model) has been developed to study the shuttle-induced excitation and emission of water molecules outgassed from the space shuttle. The focus of the first application of the model is translation-to-vibration (T-V) energy transfer since estimates suggest that this process should dominate the production of vibrationally excited H2O under typical low Earth orbit conditions. Using the velocity and position distribution functions of interacting neutral gases obtained from a neutral gases interaction model, the spatial distributions of excitation and IR radiation from contaminant water are computed, and typical results are presented. Infrared spectral data (450 - 2500/cm), measured by the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A) sensor on STS-39 (April 28 to May 6, 1991) at an altitude near 265 km, are used to test model predictions. The dependence of the radiant emission structure and brightness on outgassing rates and altitudes is discussed. The time history of the contaminant water outgassing rate is inferred for STS-39, and it is compared with the mass-spectrometer-based results for STS-4 (June 26 to July 4, 1982). Also, estimates of H2O column density at mission elapsed time (MET) 50 hours are compared for missions STS-2, STS-3, STS-4, and STS-39.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A10; p. 19,585-19,596
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN9662 , Astroparticle Physics; 35; 6; 346-353
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (〈= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.
    Keywords: Astronomy
    Type: GSFC.JA.6615.2012 , The Astrophysical Journal Letters; 727
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...