ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Machine learning 23 (1996), S. 221-249 
    ISSN: 0885-6125
    Keywords: Robotics ; Neural Networks ; Fuzzy Controllers ; Multistrategy Learning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract One of the most significant cost factors in robotics applications is the design and development of real-time robot control software. Control theory helps when linear controllers have to be developed, but it doesn't sufficiently support the generation of non-linear controllers, although in many cases (such as in compliance control), nonlinear control is essential for achieving high performance. This paper discusses how Machine Learning has been applied to the design of (non-)linear controllers. Several alternative function approximators, including Multilayer Perceptrons (MLP), Radial Basis Function Networks (RBFNs), and Fuzzy Controllers are analyzed and compared, leading to the definition of two major families: Open Field Function Approximators and Locally Receptive Field Function Approximators. It is shown that RBFNs and Fuzzy Controllers bear strong similarities, and that both have a symbolic interpretation. This characteristic allows for applying both symbolic and statistic learning algorithms to synthesize the network layout from a set of examples and, possibly, some background knowledge. Three integrated learning algorithms, two of which are original, are described and evaluated on experimental test cases. The first test case is provided by a robot KUKA IR-361 engaged into the peg-into-hole task, whereas the second is represented by a classical prediction task on the Mackey-Glass time series. From the experimental comparison, it appears that both Fuzzy Controllers and RBFNs synthesised from examples are excellent approximators, and that, in practice, they can be even more accurate than MLPs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Machine learning 23 (1996), S. 221-249 
    ISSN: 0885-6125
    Keywords: Robotics ; Neural Networks ; Fuzzy Controllers ; Multistrategy Learning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract One of the most significant cost factors in robotics applications is the design and development of real-time robot control software. Control theory helps when linear controllers have to be developed, but it doesn't sufficiently support the generation of non-linear controllers, although in many cases (such as in compliance control), nonlinear control is essential for achieving high performance. This paper discusses how Machine Learning has been applied to the design of (non-)linear controllers. Several alternative function approximators, including Multilayer Perceptrons (MLP), Radial Basis Function Networks (RBFNs), and Fuzzy Controllers are analyzed and compared, leading to the definition of two major families: Open Field Function Approximators and Locally Receptive Field Function Approximators. It is shown that RBFNs and Fuzzy Controllers bear strong similarities, and that both have a symbolic interpretation. This characteristic allows for applying both symbolic and statistic learning algorithms to synthesize the network layout from a set of examples and, possibly, some background knowledge. Three integrated learning algorithms, two of which are original, are described and evaluated on experimental test cases. The first test case is provided by a robot KUKA IR-361 engaged into the “peg-into-hole” task, whereas the second is represented by a classical prediction task on the Mackey-Glass time series. From the experimental comparison, it appears that both Fuzzy Controllers and RBFNs synthesised from examples are excellent approximators, and that, in practice, they can be even more accurate than MLPs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...