ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4943
    Keywords: Fructose 1,6-bisphosphatase ; cysteine modification ; fructose-2,6-bisphosphate ; fructose 1,6-bisphosphate ; fructose-bisphosphate binding site
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide was shown to abolish the inhibition by fructose 2,6-bisphosphate, which also protected the enzyme against this chemical modification [Reyes, A., Burgos, M. E., Hubert, E., and Slebe, J. C. (1987),J. Biol. Chem. 262, 8451–8454]. On the basis of these results, it was suggested that a single reactive sulfhydryl group was essential for the inhibition. We have isolated a peptide bearing the N-ethylmaleimide target site and the modified residue has been identified as cysteine-128. We have further examined the reactivity of this group and demonstrated that when reagents with bulky groups are used to modify the protein at the reactive sulfhydryl [e.g., N-ethylmaleimide or 5,5′-dithiobis-(2-nitrobenzoate)], most of the fructose 2,6-bisphosphate inhibition potential is lost. However, there is only partial or no loss of inhibition when smaller groups (e.g., cyanate or cyanide) are introduced. Kinetic and ultraviolet difference spectroscopy-binding studies show that the treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide causes a considerable reduction in the affinity of the enzyme for fructose 2,6-bisphosphate while affinity for fructose 1,6-bisphosphate does not change. We can conclude that modification of this reactive sulfhydryl affects the enzyme sensitivity to fructose 2,6-bisphosphate inhibition by sterically interfering with the binding of this sugar bisphosphate, although this residue does not seem to be essential for the inhibition to occur. The results also suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate may interact with the enzyme in a different way.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...