ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 675-717, doi:10.1002/2015JG003140.
    Description: The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.
    Description: World Climate Research Program-Climate and Cryosphere (WCRP-CliC); Arctic Monitoring and Assessment Program (AMAP) International Arctic Science Committee (IASC); Norwegian Ministries of Environment and of Foreign Affairs; Swedish Secretariat for Environmental Earth System Sciences (SSEESS); Swedish Polar Research Secretariat; NSF Grant Numbers: OCE 1130008, 1249133, AON-1203473, AON-1338948, OCE 1434041; Polar Research Programme of the Norwegian Research Council Grant Number: 226415
    Keywords: Arctic ; Oceans ; Circulation ; Freshwater ; Carbon cycle ; Acidification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 1271-1305, doi:10.1002/2013JC008999.
    Description: Time series of ice draft from 2003 to 2012 from moored sonar data are used to investigate variability and describe the reduction of the perennial sea ice cover in the Beaufort Gyre (BG), culminating in the extreme minimum in 2012. Negative trends in median ice drafts and most ice fractions are observed, while open water and thinnest ice fractions (〈0.3 m) have increased, attesting to the ablation or removal of the older sea ice from the BG over the 9 year period. Monthly anomalies indicate a shift occurred toward thinner ice after 2007, in which the thicker ice evident at the northern stations was reduced. Differences in the ice characteristics between all of the stations also diminished, so that the ice cover throughout the region became statistically homogenous. The moored data are used in a relationship with satellite radiometer data to estimate ice volume changes throughout the BG. Summer solid fresh water content decreased drastically in consecutive years from 730 km3 in 2006 to 570 km3 in 2007, and to 240 km3 in 2008. After a short rebound, solid fresh water fell below 220 km3 in 2012. Meanwhile, hydrographic data indicate that liquid fresh water in the BG in summer increased 5410 km3 from 2003 to 2010 and decreased at least 210 km3 by 2012. The reduction of both solid and liquid fresh water components indicates a net export of approximately 320 km3 of fresh water from the region occurred between 2010 and 2012, suggesting that the anticyclonic atmosphere-ocean circulation has weakened.
    Description: Support for Krishfield, Proshutinsky, and Timmermans, partial financial support of logistics, hydrographic observations on the board of Canadian icebreaker, and full financial coverage of all mooring instrumentation was provided by the National Science Foundation (under grants OPP-0230184, OPP-0424864, ARC-0722694, ARC-0806306, ARC- 0856531, ARC-1107277, and ARC- 1203720), and Woods Hole Oceanographic Institution internal funding. Funding for Tateyama was provided by the International Arctic Research Center – Japan Aerospace Exploration Agency (IJIS) Arctic project, and for Williams, Carmack, and McLaughlin by Fisheries and Oceans Canada.
    Keywords: Ice draft ; Beaufort Gyre ; Freshwater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-28
    Description: © The Author(s), 2023. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Timmermans, M.-L., & Toole, J. The Arctic Ocean’s Beaufort Gyre. Annual Review of Marine Science, 15(1), (2023): 223-248, https://doi.org/10.1146/annurev-marine-032122-012034.
    Description: The Arctic Ocean's Beaufort Gyre is a dominant feature of the Arctic system, a prominent indicator of climate change, and possibly a control factor for high-latitude climate. The state of knowledge of the wind-driven Beaufort Gyre is reviewed here, including its forcing, relationship to sea-ice cover, source waters, circulation, and energetics. Recent decades have seen pronounced change in all elements of the Beaufort Gyre system. Sea-ice losses have accompanied an intensification of the gyre circulation and increasing heat and freshwater content. Present understanding of these changes is evaluated, and time series of heat and freshwater content are updated to include the most recent observations.
    Description: Support was provided by the National Science Foundation Office of Polar Programs and the Office of Naval Research.
    Keywords: Arctic Ocean ; Beaufort Gyre ; Circulation ; Sea ice ; Freshwater ; Ocean heat content
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...