ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bolivia; Amazon; Deforestation; Proximate causes; Spatial analysis; Multinomial logistic regression  (1)
  • Forests; Flowering plants; Habitats; Species diversity; Herbs; Biodiversity; Forest ecology; Mexico  (1)
  • 1
    Publication Date: 2021-03-29
    Description: Forests in lowland Bolivia suffer from severe deforestation caused by different types of agents and land use activities. We identify three major proximate causes of deforestation. The largest share of deforestation is attributable to the expansion of mechanized agriculture, followed by cattle ranching and small-scale agriculture. We utilize a spatially explicit multinomial logit model to analyze the determinants of each of these proximate causes of deforestation between 1992 and 2004. We substantiate the quantitative insights with a qualitative analysis of historical processes that have shaped land use patterns in the Bolivian lowlands to date. Our results suggest that the expansion of mechanized agriculture occurs mainly in response to good access to export markets, fertile soil, and intermediate rainfall conditions. Increases in small-scale agriculture are mainly associated with a humid climate, fertile soil, and proximity to local markets. Forest conversion into pastures for cattle ranching occurs mostly irrespective of environmental determinants and can mainly be explained by access to local markets. Land use restrictions, such as protected areas, seem to prevent the expansion of mechanized agriculture but have little impact on the expansion of small-scale agriculture and cattle ranching. The analysis of future deforestation trends reveals possible hotspots of future expansion for each proximate cause and specifically highlights the possible opening of new frontiers for deforestation due to mechanized agriculture. Whereas the quantitative analysis effectively elucidates the spatial patterns of recent agricultural expansion, the interpretation of long-term historic drivers reveals that the timing and quantity of forest conversion are often triggered by political interventions and historical legacies.
    Keywords: Bolivia; Amazon; Deforestation; Proximate causes; Spatial analysis; Multinomial logistic regression ; 551 ; Environment; Geology; Geography (general); Regional/Spatial Science; Climate Change; Nature Conservation; Oceanography
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: Terrestrial herbs are important elements of tropical forests; however, there is a lack of research on their diversity patterns and how they respond to different intensities of forest-use. The aim of this study was to analyze the diversity of herbaceous angiosperms along gradients of elevation (50 m to 3500 m) and forest-use intensity on the eastern slopes of the Cofre de Perote, Veracruz, Mexico. We recorded the occurrence of all herbaceous angiosperm species within 120 plots of 20 m x 20 m each. The plots were located at eight study locations separated by ~500 m in elevation and within three different habitats that differ in forest-use intensity: old-growth, degraded, and secondary forest. We analyzed species richness and floristic composition of herb communities among different elevations and habitats. Of the 264 plant species recorded, 31 are endemic to Mexico. Both α- and γ-diversity display a hump-shaped relation to elevation peaking at 2500 m and 3000 m, respectively. The relative contribution of between-habitat β-diversity to γ-diversity also showed a unimodal hump whereas within-habitat β-diversity declined with elevation. Forest-use intensity did not affect α-diversity, but β-diversity was high between old-growth and secondary forests. Overall, γ-diversity peaked at 2500 m (72 species), driven mainly by high within- and among-habitat β-diversity. We infer that this belt is highly sensitive to anthropogenic disturbance and forest-use intensification. At 3100 m, high γ-diversity (50 species) was driven by high α- and within-habitat β-diversity. There, losing a specific forest area might be compensated if similar assemblages occur in nearby areas. The high β-diversity and endemism suggest that mixes of different habitats are needed to sustain high γ-richness of terrestrial herbs along this elevational gradient.
    Description: Open-Access-Publikationsfonds 2017
    Keywords: Forests; Flowering plants; Habitats; Species diversity; Herbs; Biodiversity; Forest ecology; Mexico ; 551
    Language: English , English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...